The CURE (Community Urgent Response Environment): pods and packs for pre-hospital care

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: HIGNETT, S., FRAY, M., BENGHER, J. ... et al., 2011. The CURE (Community Urgent Response Environment): pods and packs for pre-hospital care. Book of Abstracts, European Conference 'Design 4 Health' 13-15 July, Sheffield Hallam University, UK, pp. 55 - 57

Additional Information:

- This is a conference abstract from Design4Health 2011: http://www.design4health.org.uk/

Metadata Record: https://dspace.lboro.ac.uk/2134/9526

Version: Published

Publisher: Lab4Living, Sheffield Hallam University

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
The CURE (Community Urgent Response Environment): Pods and Packs for Pre-Hospital Care

Sue Hignett¹, Mike Fray¹, Jonathan Benger², Andrew Jones³, David Coates⁴, Neil Mansfield¹

¹Healthcare Ergonomics and Patient Safety Unit, Loughborough University, UK
²Academic Dept of Emergency Care, University of the West of England, Bristol, UK
³Openhouse Products Ltd, Birkenhead, UK
⁴Great Western Ambulance Service NHS Trust, Chippenham, UK

Context of Research

About 40% of the 10.3 million visits to NHS emergency departments in England in 2009/10 ended with the patient just needing advice and no actual treatment¹. It has previously been suggested that these needs could be met in the community through the delivery of urgent (or pre-hospital) care² by Emergency Care Practitioners (ECP)³. A first research project (Smart Pods) was carried out with 6 NHS Trusts (acute, primary care and ambulance) with 125 staff and 88 patients to explore the technology requirements needed to support this new professional role⁴.

Research question

This paper describes how the outputs from Smart Pods have been taken forward to develop a market-ready pod/pack system and a design specification for the ambulance interface in a knowledge transfer collaboration between 2 universities, 2 manufacturers and the NHS to develop a Community Urgent Response Environment (CURE).

Method

An iterative prototyping approach was taken (figure one) starting with the 8 design concepts and equipment/consumable requirements from Smart Pods. These manifested as pod/pack prototype 1.0 and were reviewed by clinical, design and ergonomic experts to produce prototype 1.1. This was tested in 4 simulated clinical scenarios with ECPs (n=10) and patient actors. The face validity of the simulations was maximized by using, for example, pig skin for suturing. After Pod/Pack User Trials (1) the vehicle interface design commenced (February 2011). This followed a similar iterative prototyping approach (in conjunction with the pod/pack prototype ergonomic and design review). User trials (2) will use clinical scenarios to test the functionality and usability of pod/pack and vehicle interface designs. The final output will be a market-ready pod/pack system and a design specification for the ambulance interface.
Results and conclusion

The results from Pod/Pack User trial (1) will be reported at the conference.

References

1. HESonline. A&E Data (experimental statistics) 2009-10
 http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&categoryID=1272
 (accessed 21 January 2011)
time, Right place,
care. Journal of Paramedic Practice, 2, 3, 116-122
Figure 1. Iterative prototyping process used in CURE