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Entry Level RP Machines: How Well Can They Cope With 
Geometric Complexity? 

Pei E, Campbell RI, De Beer DJ 
 
Type of Paper: 
Research Paper 
 
Purpose: 
The purpose of this paper was to examine the limitations of entry level RP (ELRP) 
machines when fabricating objects with high complexity.  
 
Methodology: 
The literature review provides an overview of RP technologies, followed by a 
discussion on the different levels of complexity in objects. The paper continues with 
a discussion on the definition of entry level rapid prototyping, followed by a number 
of experiments to explore the limitations of an entry level RP system when 
fabricating complex models, and to compare the results obtained with those from a 
professional RP machine using standardised build parameters and the same ABS 
material. 
 
Findings: 
Of the five complex models that were produced from the Rapman machine, four of 
them were affected by warping. The findings also found that support structures were 
difficult to remove due to the interwoven build pattern. The study also found that the 
Rapman parts were coarsely built as opposed to the Dimension parts that were less 
coarse. The Rapman parts were also much lighter due to the hollow internal 
structure, as compared to the Dimension parts that were virtually solid. From a 
quantitative viewpoint, parts produced from the Rapman machine showed 
significantly greater average errors in both absolute and percentage terms.  
 
Practical Implications: 
Users should bear in mind the restrictions of ELRP machines when fabricating 
complex shapes. The models may be prone to warping and the support structures 
could be difficult to remove. 
 
Value: 
This article allows developers to understand the restrictions when fabricating 
complex models on an ELRP machine. The findings will also enable manufacturers 
to develop better entry level systems. 
 
Keywords:  
Entry Level, Rapid Prototyping, Geometric Complexity 
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1. Introduction 

According to Graham (2000), the use of Rapid Prototyping (RP) has enabled a more 

efficient process of New Product Development (NPD). RP is the collective name for 

the set of technologies that include Stereolithography (SLA), Laser Sintering (LS), 

Fused Deposition Modeling (FDM) and Z-Corporation’s Three-Dimensional Printing 

(3DP); all of which utilise Computer-Aided-Design (CAD) data to build up a physical 

object. The use of RP is a relatively affordable, effective and fast approach for 

producing sample parts for products and moulds. These tangible models allow 

members of a multi-disciplinary team to see, interact with, clarify and evaluate the 

design (de Beer et al., 2009). Ideas can be vigorously tested since developers are 

able to fabricate parts to the required resolution. Up until recently, 3DP has been 

seen as the “entry level” RP process. As reported by Dimitrov et al (2006) and 

Wohlers (2010), 3DP has been recognised as a “very competitive process in terms 

of cost and speed”, and the number of 3D printing machines sold during 2009 had 

risen by 18% over 2008. 3DP systems from Z-Corporporation have a fast fabrication 

time, a low material cost, the option of colour, and build parts that can be used 

directly for casting (Azari and Nikzad, 2009). It was also reported that if companies 

were to invest in RP, the most popular choice (28%) would be 3DPs (Strategic 

Direction, 2009). 

 

24-bit full colour prints can also be achieved by many of the 3DP machines from Z-

Corporation (Dean, 2009). Siemer (2005) noted that the ability to provide high-

definition colour prototypes with labels directly on the model has significantly 

improved the communication of the design intent among stakeholders in new product 

development. Despite these improvements in technology, Wohlers (2003) indicated 

that for RP to better penetrate new markets, systems must become more affordable, 

easier to use and simpler to maintain. More importantly, the cost of ownership must 

drop further and quality of materials must improve.  

 

Most RP technologies offer geometric freedom that allows undercuts, overhangs and 

freeform shapes to be produced (Levy et al., 2003). As low-cost  ELRP machines are 

now gaining in popularity, the aim of this paper is to find out whether complicated 

objects can be fabricated using these entry level machines. Research is first 
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undertaken through a literature review to discuss RP technology, followed by 

defining levels of complexity that sets the scene for the experiments that were 

conducted. 

 

2. Background to Research 

2.1 Rapid Prototyping   

This section provides a literature review on RP technology, particularly concerning 

the complexity of 3D objects that can be produced. The use of RP allows 

components to be fabricated directly from CAD data in the form of a .stl file to handle 

and transfer data of a part from the CAD system to the RP machine (Kai et al., 

1997). RP has redefined the process of NPD by offering geometric freedom that was 

once impossible with traditional manufacturing or model-making. The use of RP is 

effective for high-value industries such as automotive, bio-medical and aerospace 

applications where part complexity is high (Yan et al., 2009). Some common uses of 

RP in NPD include concept modelling, fit and function testing, tooling trials and 

customised fabrication of end-use parts (Strategic Direction, 2009). While RP 

includes a broad spectrum of technologies such as SLA, LS and FDM, this study 

shall centre on entry level RP machines. 

 

A new trend in RP has emerged recently and can be referred to as entry level RP, 

which uses machines that are comparatively inexpensive, desktop-sized and usually 

incorporate an open build chamber. They are gaining popularity among higher 

education institutions as a learning platform and are used by independent product 

developers who are unable to afford a full-fledged professional system. In terms of 

cost, ELRP machines range from US$520 (RepRap II: Mendel) to US$2400 

(Fab@Home Model 1). At the time of writing, the Fab@Home Model 1 was found to 

be the most expensive ELRP system, but a second model will soon be released in 

the market (Fab@Home, 2009). The newer model (Fab@Home Model 2) is 

expected to cost US$1300. Entry level systems are usually constructed from self-

assembled kits using only basic hobbyist tools and skills, as opposed to commercial 

machines that are delivered as a fully-assembled system (Marlone and Lipson, 

2007). Another key characteristic of entry level systems is the open-source approach 

where online discussion forums on the internet are available for participants and 

http://fabathome.org/wiki/index.php?title=Fab%40Home:Model_1_Overview
http://fabathome.org/wiki/index.php?title=Fab%40Home:Model_1_Overview
http://fabathome.org/wiki/index.php?title=Fab%40Home:Model_1_Overview
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users to share and exchange ideas, provide advice and contribute to the machine 

control source code. According to Malone and Lipson (2007), such “ubiquitous 

automated manufacturing opens the door to a new class of independent designers 

with the ability to directly fabricate functional custom objects”. Despite the growing 

popularity of ELRP systems, very little research has been undertaken to examine the 

issues or limitations of using them.  

 

For this study, the authors have studied four different ELRP systems to investigate 

key similarities and differences among them. The four machines were the Bits-from-

Bytes Rapman 3D (Model 1) <http://www.bitsfrombytes.com>, the Fab@Home 

Fabber 1 from Massachusetts Institute of Technology (MIT) < http://fabathome.org>, 

the Replicating Rapid-Prototyper (RepRap II: Mendel) <http://reprap.org> and the 

Makerbot CupCake CNC <http://www.makerbot.com> (Stevens, 2009). Although the 

four systems have slightly different performance specifications (Table 1), they 

possess the same layer-based extrusion technology. In terms of similarity, all four 

systems are based on a Cartesian (X, Y, Z) 3-axis process and are only capable of 

producing low-resolution objects. In addition, all of them embrace an open-source 

approach where information about the hardware and software is available on the 

internet. This allows developers and the community to be able to openly discuss 

issues.  

 

System Rapman 3D 
(Model 1) 

Fab@Home 
(Model 1) 

RepRap II: 
Mendel 

Makerbot 
CupCake CNC 

Cost US$1495 US$2400 US$520 US$750 

Build Process 

FFF (Fused 
Filament 
Fabrication) / 
Thermoplastic 
extrusion 

Syringe-based 
extrusion  

FFF (Fused 
Filament 
Fabrication) / 
Thermoplastic 
extrusion 

FFF (Fused 
Filament 
Fabrication) / 
Thermoplastic 
extrusion 

Positioning 
Cartesian  
(X, Y, Z)  
3-axis system 

Cartesian  
(X, Y, Z)  
3-axis system 

Cartesian  
(X, Y, Z)  
3-axis system 

Cartesian  
(X, Y, Z)  
3-axis system 

http://ccsl.mae.cornell.edu/papers/RPJ07_Malone.pdf
http://ccsl.mae.cornell.edu/papers/RPJ07_Malone.pdf
http://web.mit.edu/
http://fabathome.org/wiki/index.php?title=Fab%40Home:Model_1_Overview
http://fabathome.org/wiki/index.php?title=Fab%40Home:Model_1_Overview
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Input Type SD Card USB 
Connection 

USB 
Connection 

SD Card     
and USB 
Connection 

Maximum print 
dimensions 

275mm x 
205mm x 
210mm 

203 mm x   
203 mm x  
102 mm 

200 mm x   
200 mm x  
140 mm 

100 mm x   
100 mm x  
130 mm 

Print resolution 0.1 mm 0.1 mm 0.1 mm 0.08mm 

Printing 
Speeds 

17.0 mm3  
per second 

Depending on 
fluidity of 
material 

15.0 cm3 per 
hour  

X / Y feed rate 
5000 mm per 
minute  
Z feed rate 200 
mm per minute 

Materials 

ABS, HDPE, 
LDPE, PP, 
uPVC (in 3mm 
filament) 

Any kind of 
liquid or paste 
that can be 
dispensed 
from a syringe 

ABS, PLA, 
HDPE, etc (in 
3mm filament) 

ABS, PLA, 
HDPE, CAPA 
(PCL) (in 3mm 
filament) 

 

Table 1: Technical Specifications for the four systems 

 

 

In terms of differences, the Fab@Home Fabber 1 uses a syringe to extrude material, 

whereas the other three systems employ thermoplastic extrusion from a filament. 

There are also variations in terms of input, print dimensions, print resolution and 

printing speeds. Another significant difference is the cost, where the Fabber 1 is the 

most expensive and the RepRap II: Mendel is the most affordable. The Rapman 3D 

Model 1 (Figure 1) was used for this study to examine the limitations of ELRP 

machines due to its availability and accessibility to the authors. Although the 

Rapman was used as an example of an ELRP machine, it must be clarified that the 

results from this study do not aim to generalise the capabilities or limitations of other 

entry level RP systems in the market. 
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Figure 1: The Rapman 3D System 

 

2.2 Rapman 3D 

Recognising that most RP systems are an expensive investment, the Rapman 

machine was developed to allow Computer Aided Manufacturing (CAM) to be made 

available to schools and tertiary institutions (Rapman, 2009). According to Breslin 

(2010), the use of affordable RP systems such as the Rapman is now finding a place 

in education as an important tool in design and technology teaching, where it gives 

students a sense of feel, fit and sense. The physical manifestation and scale help 

students understand what the product is going to do and how to redevelop it. The 

Rapman is also cost-effective it only uses material actually required to build the 

model, which results in very little waste (Merlin John Online, 2009). Assembling the 

machine from a kit allows pupils to learn basic engineering principles and the open-

box concept lets users see and understand the production process clearly. The 

process of using the Rapman begins from the 3D CAD model which is saved in the 

form of an .stl and converted into a set of G-code instructions, which contain the 

build information for the Rapman. The extruder head is heated to a pre-determined 

temperature and begins to extrude molten plastic layer by layer to eventually build up 

a solid model. A variety of materials in filament form can be used, including 

Acrylonitrile Butadiene Styrene (ABS), Polyvinyl Chloride (PVC), Polyethylene (PE), 

Polypropylene (PP), Polystyrene (PS), Polycarbonate (PC) and bio-degradable 

Polylactic Acid (PLA). The build parameters such as temperature, extrusion flow and 
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speed of the nozzle are configured in the G-code and can be adjusted from the 

machine console (Rapman, 2009). Having discussed aspects of RP and the Rapman 

system, the next section aims to clarify the various levels of complexity present in 

objects.  

 

2.3 Levels of Complexity 

For this research, complexity refers to the quality or state of an object in terms of its 

intricacy and connections (Sukumar et al., 2008). There are several ways of defining 

the complexity of a model. Among the earliest classification was by Forrest (1974) 

who proposed ‘geometric complexity’ in terms of lines, planes, curves, surfaces, etc.; 

‘combinatorial complexity’ that concerned the number of components, edges, faces, 

etc.; and ‘dimensional complexity’ in terms of 2D or 3D objects. While Rodríguez-

Toro et al. (2002) proposed that complexity could be identified by the level of 

geometry, topology and assembly, Rossignac (2005) further suggested that 

complexity can be obtained through computational methods and categorised 

according to ‘algebraic complexity’, ‘topological complexity’, ‘morphological 

complexity’, ‘combinatorial complexity’ or ‘representational complexity’.  

 

Some researchers have proposed the use of algorithms to evaluate the complexity of 

an object (Gero and Kazakov, 2004; Iyer et al., 2006; Jayanti et al., 2006; and Wang 

2008). Valentan et al. (2008) also proposed four approaches by means of simple 

equations to define the complexity of a 3D CAD model. For their study, they used six 

different forms including a prism, rib, plug, housing, holder and wheels. In the first 

method, they proposed that a rough evaluation of the shape complexity, not 

considering the size or volume, could be made by determining the number of 

triangles (or facets) within the .stl data through a CAD program (Valentan et al. 

2006). 

 

The second method was to calculate the ratio between the volume and the surface 

which could also be calculated from the CAD software. Thirdly, shape complexity 

could be found by calculating the ratio of the block volume to the parts volume. 

Finally, they proposed that complexity could be obtained by calculating the ratio of 

the volume to the number of facets. While the first method was the simplest 
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approach, this was a subjective estimate being dependent on the export resolution of 

the CAD file. The second and third methods are similar and do not present accurate 

results. The more accurate method was the fourth approach which used the ratio of 

the volume to the number of facets (ibid).  

 

While researchers have suggested that the complexity of an object could be defined 

from a computational or statistical perspective, Heaps and Handel (1999) argued 

that the complexity could be based more simply through perception about its 

connectedness, depth, orientation and structure. More recently, Sreenivas et al. 

(2008) undertook a series of trials that examined the perceptual complexity of 

objects concerning its geometry. They found that complexity was directly related to 

the variation of the curvature whereby sharper and unexpected curves contributed to 

increased complexity. Secondly, the number of parts was significantly and directly 

proportional to the complexity of an object. Thirdly, objects and surfaces with lesser 

or no symmetry were defined as being most complex. Lastly, the number of 

protrusions, holes and intricate details also increased the complexity. For this 

research, the complexity of objects is defined using a perceptual approach in terms 

of intricacy and connections (ibid). Simple objects would possess planar surfaces 

with minimal variation in curvature and having multiple axes of symmetry. In contrast, 

complex objects would consist of intricate details with a number of holes and with 

little symmetry and variations on the surface. 

 

3. Experimental Work 

3.1 Objectives of the Experiments 

The objectives of the experiments were to explore the limitations of an entry level RP 

system when fabricating complex models, and to compare the results obtained with 

those from a professional RP machine. The method was to use the Rapman as an 

example of an entry level machine and the Dimension SST from Stratasys as an 

example of a professional RP machine. Both machines work on an extruded filament 

basis but there is an order of magnitude difference in their costs. In terms of 

experimental limitations, only one build was conducted for each model and therefore 

the study does not really address the aspect of process variability. In order to provide 

a greater level of consistency in the experiments, the ELRP machine was used with 
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identical settings in terms of extrusion flow (20.7mm/s), nozzle heat (245°C) and 

nozzle head speed (64.0mm/s) with the same type of extrusion material (Acrylonitrile 

butadiene styrene) and bed surface (perspex bed) throughout the trials. In addition, 

all of the experiments took place in the same well-ventilated indoor space at room 

temperature. The models on the Dimension machine were all built at the same time, 

in the controlled environment of a sealed build chamber. 

 

Having defined complexity by means of a perceptual approach, five 3D CAD models 

were modelled using the Inventor CAD software from AutoDesk. They comprised a 

spiral-pillared arch, a spinal vertebra bone, a simple gear system, a bag buckle and 

a pair of pliers. The key features of the five models are summarised in Table 2. From 

the five CAD models, the next step was to fabricate them on the Rapman system 

and record any issues that were observed.   

 

Name Spiral-pillared 
arch Spine bone Gear system Bag buckle Pliers 

Image 

 
 

 
 

 
 

 
 

 
 

Complexity 
Feature 

Variation of 
curvature, four 

connected 
pillars 

Variation of 
curvature, 
intricate 
details 

number of 
protrusions 

Deeply 
recessed 
undercut 

Presence of 
protrusions 
and holes 

Objective 
of Test 

To investigate 
if the four 

pillars could 
be connected 

without 
support 

structures 

To investigate 
if detailed 

surfaces can 
be fabricated 

with the use of 
support 

structures 

To investigate 
if parts can be 
fabricated with 

sufficient 
accuracy to 

allow meshing 

To investigate 
if support 
structures 
could be 

removed from 
the recesses  

To investigate 
if fabricated 
parts can be 
assembled 

 

Table 2: 3D CAD models and description of their complex features 

http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene
http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene
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3.2 Fabrication of CAD Models with the Rapman Machine 

As an initial trial run prior to fabricating the five models, a simple rectangular solid 

with a chamfered edge and hollow area was produced on the Rapman ELRP 

machine (Figure 2).  

 

 
Figure 2: Rectangular solid  

  

During fabrication, it was found that the extruded polymer (ABS) did not sufficiently 

adhere to the bed surface. A series of improvisations were made, including the use 

of solvent, double-sided adhesive tape and roughening the surface with sandpaper, 

all of which increased the bonding. With further tests, it was found that raising the 

raft base temperature from 200°C to 245°C also improved the build quality (Figure 

3). Having successfully completed the first print, the five complex models were 

produced. 

 

 
Figure 3: Completed model 

 

3.2.1 Spiral-pillared Arch 

The complexity of the spiral-pillared arch is shown in the multiple variations of 

curvature and having four pillars joined in the middle. The objective was to 
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investigate whether the spiral profiles and four pillars could be built and connected 

without the need for support structures. As this was the first complex model to be 

fabricated, a single arch was first attempted. During fabrication, due to the tall profile 

and small raft base area, the model became unstable. The solution was to increase 

the adhesion of the base surface by adding additional adhesive tape. The results 

were satisfactory, following which a second thinner model was built. When the 

results were once again satisfactory, the final model was fabricated without any 

problems except for some slight warping that was observed at the raft layer (Figure 

4). This experiment showed that multiple spiral profiles and separated areas in 

proximity could be joined without the need for support structures.  

                                            

 
Figure 4: Final model of Spiral-pillared Arch 

 

3.2.2 Spinal Vertebra Bone 

The complexity of the vertebra lay in having multiple variations of curvature with very 

intricate surface details. It was observed that the bone geometry was overhanging in 

most areas and hence the need for support structures arose. The objective of the 

experiment was to ascertain if complicated surfaces could be fabricated with the use 

of support structures. Some warping on the raft layer was observed as shown in 

Figure 5. Despite the warping, the experiment showed that detailed surfaces with 

overhanging parts could be fabricated with the addition of support structures. 
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Figure 5: Warping on raft layer 

 

3.2.3 Gear System 

The gear system model contained a high level of rotational symmetry with little 

variation in surface curvature that would initially classify it as a simple object. 

However, the complexity lay in the large number of protrusions and holes. The 

objective was to investigate whether the components could be fabricated with a 

degree of accuracy that would allow the gears to mesh. Due to the large surface 

area of the base, a large amount of warping occurred as shown in Figure 6. The bow 

warp along the length of the face was a result of shrinkage from the rapid and 

uneven cooling of the plastic. Several methods including accelerating and reducing 

the rate of extrusion flow; and increasing and decreasing the temperature of the 

nozzle proved to be ineffective in reducing this effect. Despite the severe warping, 

the parts were assembled together with no major issues. 

    

 
Figure 6: Warping on the base of gear system 

 

3.2.4 Bag Buckle 

The bag buckle contains deep and recessed undercuts that required a need for 

tightly-woven support structures. The objective was to investigate if these internal 

structures could be easily removed and whether the two parts could fit securely 

together. Due to the relatively small surface area, no warping was observed and the 

only issue was the removal of the support material. It was resolved by carefully using 

a penknife to carve out the internal support material. The two buckle components 

fitted together reasonably well ((Figure 12).    
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Figure 12: Fitting of bag buckle components 

 

3.2.5 A Pair of Pliers 

The pliers were the last parts to be built on the Rapman machine. The parts 

contained several protrusions and holes which categorised it as a complex model. 

The objective was to investigate whether the pieces could be assembled as a 

functional prototype. Due to the lengthwise dimension, some bow warping was 

observed on the arms. Despite the minor warping, the components were put together 

and there were no issues with the assembly (Figure 13). 

 

    
Figure 13: Assembled pliers 

 

3.3 Comparison with Models built on the Dimension Machine 

The same .stl files as used previously were processed to create a single build 

platform on a Dimension SST machine using standardised build parameters for the 

Stratasys supplied ABS material (Figure 14). One unexpected issue that occurred 

was the failure of the bag buckle parts to build correctly. This was traced to the .stl 

file which did not represent a single solid object but rather a series of unconnected 

surfaces. This had not proved a problem for the Rapman processing software, which 

had been able to generate usable G-code instructions. The build platform was 
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immersed in an agitated caustic solution for several hours to remove all of the 

soluble supports that had been automatically built with the part models. A second 

issue observed was a degree of warping on the gear system base part (Figure 15). 

This was not nearly as extensive as with the Rapman machine but served to 

demonstrate that even with a heated build envelope, fabrication of large flat areas of 

thermoplastic material can cause problems.  

 

 

Figure 14: Dimension parts on Single Build Platform 

 

Figure 15: Warping on Gear System Base Part 

 

The sets of parts obtained from the Rapman machine and the Dimension machine 

were subjected to both qualitative and quantitative comparative analyses. From a 

qualitative viewpoint, the obvious differences between the parts were threefold. 

Firstly, the Rapman parts had numerous “strings” of material coming off their 

surfaces (see Figure 4) whereas the Dimension parts were very “clean”. Secondly, 
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the surface roughness of the Rapman parts was noticeably worse, mainly due to the 

thicker layers used (0.4mm compared to 0.25mm). Thirdly, the Rapman parts were 

much lighter because they had been built with a hollow internal structure to reduce 

build time, whereas the Dimension parts were virtually solid.  

 

For the quantitative comparative analysis, three key dimensions were identified on 

each part and measured to two decimal places using a set of digital Vernier callipers. 

The dimensions were typically those from major features of the parts that would 

determine their functionality. The total number of dimensions measured for each set 

of parts was thirty. The difference between each measured dimension and the 

“exact” CAD model dimension was calculated (always expressed as a positive value) 

and then converted to a percentage error. Table 3 shows the average values of both 

absolute and percentage errors for the Rapman and Dimension parts. The Rapman 

machine demonstrates significantly greater average errors in both absolute and 

percentage terms. An interesting phenomenon that was revealed by this analysis 

was that the Dimension machine would more often build oversize dimensions (20 out 

of 30) whereas the Rapman would more often build undersize dimensions (23 out of 

30). 

 

Machine Average Absolute Error Average Percentage Error 
Rapman 0.54 mm 1.90 % 

Dimension 0.19 mm 0.94% 
 

Table 3: Comparative Error Results for Rapman and Dimension machines. 

 

4. Discussion 

Two major issues were encountered with the Rapman parts - warping and the 

difficult removal of internal support material. Warping occurred between the bed and 

the raft surface, as well as between the raft surface and the actual component. From 

the experiments, four out of five of the objects, with the exception of the bag buckle, 
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experienced warping. To reduce the incidence of surface warp in ELRP systems, 

developers are proposing the use of Polylactic acid (PLA) material (Makerbot 2010) 

or the installation of a heated chamber or bed (Keegan, 2010; Bits from Bytes, 

2010). Despite these suggestions, the heating accessories are not yet commercially 

available. 

 

The difficult removal of internal support material was another issue that was 

encountered during this study. When fabricating the spine bone, the support material 

was produced on the external surface and they could be easily removed. However, 

the bag buckle contained a deep cavity that made the removal of support material 

very difficult. The support material was carved out with a scalpel, and it was a 

lengthy process. Removing support material is still a manual process and standard 

solution has yet been offered by vendors. However, developers are now beginning to 

offer the option of a second nozzle that could be incorporated into the Rapman 

machine. Therefore, a suggestion would be to use the supplementary nozzle to eject 

a support material that could be soluble.  

 

The relatively low quality of the models produced by the RapMan machine in 

comparison to the Dimension machine means that they would be inherently 

unsuitable for professional design or engineering practice. They are more suited to 

educational and home hobbyist usage.  

 

5. Conclusion 

As entry level RP systems gain popularity in the industry, the next generation of 

machines will continue to provide low ownership costs with an acceptable degree of 

quality. This paper has provided an overview of RP technology, centring on ELRP 

systems. This was followed by defining objects according to their level of complexity, 

leading to experiments with five models with complex features that showed 

variations in curvature, inter-connected parts, intricate details, protrusions, holes and 

deeply recessed undercuts. These parts were built both on a Rapman machine and 

a Dimension SST machine. While the Rapman machine was found to be capable of 

producing low-resolution objects, two major issues existed. They include the problem 

of warping and the need to manually remove support structures. Other issues were 
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poorer dimensional accuracy and surface roughness. The results of this study 

through the use of the Rapman system should not be generalised as the capabilities 

of a low entry RP machine. Further research could investigate the use of different 

materials to examine the impact on warping. Future work on a wider scale could also 

examine how other parameters such as the temperature of the material and the build 

pattern could affect the build quality of parts produced from an entry level RP 

machine.  
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