Physical electrochemistry. Fundamentals, techniques, and applications by Eliezer Gileadi (book review)

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is a book review. It was published in the journal, Journal of Solid State Electrochemistry [© Springer-Verlag ] and is available at: http://www.springerlink.com/content/101568/

Metadata Record: https://dspace.lboro.ac.uk/2134/9826

Version: Accepted for publication

Publisher: © Springer-Verlag

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

by

Stephen Fletcher

Department of Chemistry,
Loughborough University,
Ashby Road, Loughborough,
Leicestershire LE11 3TU, UK

Tel. 01509 22 2561 Fax 01509 22 3925
Email Stephen.Fletcher@Lboro.ac.uk

Keywords

BOOK REVIEW
Eliezer Gileadi, Physical Electrochemistry. Fundamentals, Techniques and Applications
1st edition (January 14th, 2011)
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
373 pages, £60.00 / €72.00, ISBN: 978-3-527-31970-1

In the preface to his new book “Physical Electrochemistry”, Eliezer Gileadi tells us that his primary motivation was to write a textbook that could form the basis of an introductory course in interfacial electrochemistry. He has succeeded admirably.

Gileadi is a distinguished teacher and researcher, and in this book he has crystallized his vast experience into twenty self-contained chapters suitable for the beginner. The special value of Gileadi’s book is that it answers questions that student’s actually ask. His cast of mind is always analytical, methodical and skeptical, and his language is clear and unambiguous. Where he perceives flaws in the established theory, Gileadi tells us what they are, and why they are there. Tacit assumptions are dragged into the daylight, and weak assumptions are ruthlessly exposed. As for false assumptions, they simply don’t make it onto the page. The result is a book that is not only trustworthy, but one which also contains what might be termed the irreducible core of physical electrochemistry.

The book provides a fine introduction to electrode kinetics, electrode capacitance, and electrocatalysis. All the classical techniques are described, and special chapters are devoted to electroplating, batteries, and fuel cells. In addition, the various chapters are also self-contained, which means that they can be consulted in sequence, or out-of-sequence, as the reader prefers. For this reason, the later chapters of the book will also be of use to generalists who wish to develop some specialist knowledge related to the burgeoning new field of materials electrochemistry.

As for omissions, these are few and far between. I was disappointed not to find a section on nucleation and crystal growth, since this underpins a large amount of the electrometallurgical processing industry. But, on reflection, this is probably just a personal gripe. The decision to forego standard referencing is also a little quirky, and may perhaps inhibit weaker students from consulting the original literature. In the context of the total achievement, however, these are very minor complaints. No author is omniscient, and Eliezer Gileadi has crammed more electrochemical knowledge into 373 pages than we have a right to expect. This is an excellent textbook, and I would recommend it to anyone.

Stephen Fletcher,
Loughborough.