Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/10277

Title: Computer simulations of evaporation of sessile liquid droplets on solid substrates
Authors: Semenov, Sergey
Keywords: Sessile droplet
Evaporation
Computer simulations
Kinetic effects
Marangoni convection
Surfactants
Issue Date: 2012
Publisher: © Sergey Semenov
Abstract: Present work is focused on the numerical study of evaporation of sessile liquid droplets on top of smooth solid substrates. The process of evaporation of a sessile liquid droplet has lots of different applications both in industry and research area. This process has been under study for many years, and still it is an actual problem, solution of which can give answers on some fundamental and practical questions. Instantaneous distribution of mass and heat fluxes inside and outside of an evaporating sessile droplet is studied in this research using computer simulations. The deduced dependences of instantaneous fluxes are applied for self-consistent calculations of time evolution of evaporating sessile droplets. The proposed theory of evaporating sessile droplets of liquid has been validated against available experimental data, and has shown a good agreement. Evaporation of surfactant solution droplets is studied experimentally. The theory, proposed for two stages of evaporation, fits experimental data well. An additional evaporation stage, specific for surfactant solutions, is observed and described. Mathematical modelling of this stage requires further research on surfactant adsorption and its influence on the value of receding contact angle. Numerical study of the evaporation of microdroplets is conducted in order to evaluate the significance of different evaporation mechanisms (diffusive and kinetic models of evaporation) and different physical phenomena (Kelvin s equation, latent heat of vaporization, thermal Marangoni convection, Stefan flow).
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/10277
Appears in Collections:PhD Theses (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Form-2012-Semenov.pdf778.05 kBAdobe PDFView/Open
Thesis-2012-Semenov.pdf2.3 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.