Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/10770

Title: Structural model updating using vibration measurements
Authors: Papadimitriou, Costas
Ntotsios, Evangelos
Keywords: Model updating
Structural identification
Multi-objective optimization
Pareto optimality
Issue Date: 2009
Publisher: National Technical University of Athens, Greece (© The authors)
Citation: PAPADIMITRIOU, C. and NTOTSIOS, E., 2009. Structural model updating using vibration measurements. IN: Papadrakakis, M., Lagaros, N.D., Fragiadakis, M. (eds.). 2nd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2009), Rhodes, Greece, 22-24 June, pp.167-180.
Abstract: A multi-objective optimization framework is presented for updating finite element models of structures based on vibration measurements. The method results in multiple Pareto optimal structural models that are consistent with the measured data and the residuals used to measure the discrepancies between the measured and the finite element model predicted characteristics. The relation between the multi-objective identification method, Bayesian in-ference method, and conventional single-objective weighted residuals methods for model up-dating is discussed. Computational algorithms for the efficient and reliable solution of the resulting optimization problems are presented. The algorithms are classified to gradient-based, evolutionary strategies and hybrid techniques. In particular, efficient algorithms are introduced for reducing the computational cost involved in estimating the gradients of the ob-jective functions representing the modal residuals. Specifically, a formulation requiring the solution of the adjoint problem is presented, avoiding the explicit estimation of the gradients of the modal characteristics. The adjoint method is also extended to carry out efficiently the estimation of the Hessian of the objective function. The computational cost for estimating the gradients and Hessian is shown to be independent of the number of structural model parame-ters. The methodology is particularly efficient to system with several number of model param-eters and large number of DOFs where repeated gradient and Hessian evaluations are computationally time consuming. Component mode synthesis methods dividing the structure to linear substructural components with fixed properties and linear substructural components with uncertain properties are incorporated into the methodology to further reduce the compu-tational effort required in optimization problems. The linear substructures with fixed proper-ties are represented by their lower contributing modes which remain unchanged during the model updating process. The method is particular effective for finite element models with large number of DOF and for parameter estimation in localized areas of a structure. Theoret-ical and computational developments are illustrated by updating finite element models of a laboratory building using impact hammer measurements and multi-span reinforced concrete bridges using ambient vibration measurements.
Description: This is a conference paper.
Version: Accepted for publication
URI: https://dspace.lboro.ac.uk/2134/10770
ISBN: 9789602546826
9602546824
Appears in Collections:Conference Papers (Civil and Building Engineering)

Files associated with this item:

File Description SizeFormat
IL_compdyn2009_paper.pdf848.42 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.