Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/11083

Title: Acoustic scattering in dispersions: improvements in the calculation of single particle scattering coefficients
Authors: Pinfield, Valerie J.
Issue Date: 2007
Publisher: © Acoustical Society of America
Citation: PINFIELD, V.J., 2007. Acoustic scattering in dispersions: improvements in the calculation of single particle scattering coefficients. Journal of the Acoustical Society of America, 122 (1), pp.205-221.
Abstract: Measurements of ultrasound speed and attenuation can be related to the properties of dispersed systems by applying a scattering model. Rayleigh’s method for scattering of sound by a spherical object, and its subsequent developments to include viscous, thermal, and other effects (known as the ECAH model) has been widely adopted. The ECAH method has difficulties, including numerical ill-conditioning, calculation of Bessel functions at large arguments, and inclusion of thermal effects in all cases. The present work develops techniques for improving the ECAH calculations to allow its use in instrumentation. It is shown that thermal terms can be neglected in some boundary equations up to ∼ 100 GHz in water, and several simplified solutions result. An analytical solution for the zero-order coefficient is presented, with separate nonthermal and thermal parts, allowing estimation of the thermal contribution. Higher orders have been simplified by estimating the small shear contribution as the inertial limit is approached. The condition of the matrix solutions have been greatly improved by these techniques and by including appropriate scaling factors. A method is presented for calculating the required Bessel functions when the argument is large (high frequency or large particle size). The required number of partial wave orders is also considered.
Description: This article was published in the Journal of the Acoustical Society of America and is also available at: http://dx.doi.org/10.1121/1.2737745
Version: Published
URI: https://dspace.lboro.ac.uk/2134/11083
Publisher Link: http://dx.doi.org/10.1121/1.2737745
ISSN: 0001-4966
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
pinfield2007.pdf256.35 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.