Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/11444

Title: Photosensitized generation of singlet oxygen from ruthenium(II)-substituted benzoaza-crown-bipyridine complexes
Authors: Abdel-Shafi, Ayman A.
Beer, Paul D.
Mortimer, Roger J.
Wilkinson, Francis
Issue Date: 2000
Publisher: © The Royal Society of Chemistry
Citation: ABDEL-SHAFI, A.A. ... et al, 2000. Photosensitized generation of singlet oxygen from ruthenium(II)-substituted benzoaza-crown-bipyridine complexes. Physical Chemistry Chemical Physics, 2 (14), pp. 3137 - 3144
Abstract: Photophysical properties in dilute acetonitrile solution are reported for a number of vinyl-linked benzoaza-15-crown-5-bipyridine ruthenium(II) complexes and for three multinuclear Ru(II) bipyridine complexes. Absorption and emission spectra are found to depend on the number of conjugated benzoaza-15-crown-5-bipyridine ligands present in the complex. The bi-, tri- and tetranuclear Ru(II) complexes show absorption and emission maxima very close to those of the parent mono-complex, Ru(II) tris-bipyridine. For those complexes with similar phosphorescence maxima, in the range 607–615 nm, the lifetimes of the lowest excited triplet metal to ligand charge-transfer (3MLCT) states in de-aerated acetonitrile are also very similar, i.e., in the range 0.71 to 0.88 μs. However, for two of the studied compounds, where the phosphorescence maxima shift to 692 and 699 nm, the phosphorescence lifetimes increase to 2.2 and 3.0 μs, respectively. Rate constants, kq, for quenching by molecular oxygen of the lowest excited 3MLCT states are in the range (2.4–4.6)×109 dm3 mol−1 s−1. Efficiencies of singlet oxygen production, fΔT, sensitized by these ruthenium complexes are in the range of 0.26–0.69, lower values being associated with those compounds showing low potentials for oxidation of conjugated ligands. The product of kq and fΔT gives the net rate constant for quenching due to energy transfer to produce singlet oxygen kq1, and kq−kq1 equals kq3, the net rate constant for quenching due to energy dissipation of the excited 3MLCT states without energy transfer. Quenching rate constants, kq and kq3, were found to give an inverse correlation with the energy of the excited state being quenched. However, the dependence of kq1 values on the energy of the excited states being quenched by oxygen was more complicated, with complexes falling into two groups showing either high or low efficiencies for quenching with energy transfer.
Description: This article is closed access, it was published in the journal Physical Chemistry Chemical Physics [© The Royal Society of Chemistry]. The definitive version is available at: http://dx.doi.org/10.1039/b002884n
Version: Published
DOI: 10.1039/b002884n
URI: https://dspace.lboro.ac.uk/2134/11444
Publisher Link: http://dx.doi.org/10.1039/b002884n
ISSN: 1463-9076
Appears in Collections:Closed Access (Chemistry)

Files associated with this item:

File Description SizeFormat
PCCP (2000) 3137-3144.pdf243.34 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.