Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/11455

Title: Forecasting low-cost housing demand in Pahang, Malaysia using artificial neural networks
Authors: Zainun, Noor Y.B.
Rahman, Ismail A.
Eftekhari, Mahroo
Keywords: Low-cost housing demand
ANN
Issue Date: 2011
Publisher: © Universiti Tun Hussein Onn Malaysia (UTHM) and Concrete Society of Malaysia (CSM)
Citation: ZAINUN, N.Y.B., RAHMAN, I. A. and EFTEKHARI, M., 2011. Forecasting low-cost housing demand in Pahang, Malaysia using artificial neural networks. International Journal of Sustainable Construction Engineering & Technology, 2 (1), pp. 83 - 88.
Abstract: Low cost housing is one of the government main agenda in fulfilling nation’s housing need. Thus, it is very crucial to forecast the housing demand because of economic implication to national interest. Neural Networks (ANN) is one of the tools that can predict the demand. This paper presents a work on developing a model to forecast lowcost housing demand in Pahang, Malaysia using Artificial Neural Networks approach. The actual and forecasted data are compared and validate using Mean Absolute Percentage Error (MAPE). It was found that the best NN model to forecast low-cost housing in state of Pahang is 1-22-1 with 0.7 learning rate and 0.4 momentum rate. The MAPE value for the comparison between the actual and forecasted data is 2.63%. This model is helpful to the related agencies such as developer or any other relevant government agencies in making their development planning for low cost housing demand in Pahang
Description: This article was published in the International Journal of Sustainable Construction Engineering & Technology [© Universiti Tun Hussein Onn Malaysia (UTHM) and Concrete Society of Malaysia (CSM)] and the definitive version is available at: http://penerbit.uthm.edu.my/ojs/index.php/IJSCET/article/viewFile/152/71
Version: Published
URI: https://dspace.lboro.ac.uk/2134/11455
Publisher Link: http://penerbit.uthm.edu.my/ojs/index.php/IJSCET/article/viewFile/152/71
ISSN: 2180-3242
Appears in Collections:Closed Access (Civil and Building Engineering)

Files associated with this item:

File Description SizeFormat
international journal of sustainable construction 2011.pdf117.06 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.