Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/11870

Title: The influence of piston ring geometry and topography on friction
Authors: Morris, Nicholas J.
Rahmani, Ramin
Rahnejat, Homer
King, P.D.
Fitzsimons, Brian
Keywords: Engines
Piston rings
Hydrodynamic friction
Boundary friction
Surface roughness
Issue Date: 2013
Publisher: Sage © Institution of Mechanical Engineers
Citation: MORRIS, N. ... et al., 2013. The influence of piston ring geometry and topography on friction. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 227 (2), pp.141-153.
Abstract: This article provides solution for isothermal mixed hydrodynamic conjunction of the compression ring to cylinder liner. This is obtained using the average flow model representation of Reynolds equation based on pressure- and shear-induced flow factors. In particular, the effects of compression ring axial profile along its face-width and surface topography of contiguous solids are investigated. It is shown that ring geometry may be optimized to improve lubrication, whilst care should be taken in order to avoid oil loss or degradation resulting from any loss of sealing. In predicting friction, it is shown that appropriate surface parameters should be used in-line with the state of wear of the ring. For a new ring against a plateau honed liner, boundary friction contribution during the initial running-in wear phase should be predicted according to the average asperity peak heights protruding above the plateau, whilst the plateau height also takes into account the valleys within the surface roughness or grooves created by any cross-hatch honing would be the appropriate measure of topography for worn rings. The main contributions of the article are in providing an analytic solution as well investigation of ring face-width geometry and effect of wear upon friction. However, it is acknowledged that generated heat, inlet boundary starvation and circumferential non-conformity of ring to the bore surface would affect the film thickness and exacerbate generated friction accordingly. These further considerations would require a numerical solution, rather than an analytical one presented here.
Description: This article was accepted for publication in the journal, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [Sage © Institution of Mechanical Engineers] and the definitive version is available at: http://dx.doi.org/10.1177/1350650112463534
Version: Accepted for publication
DOI: 10.1177/1350650112463534
URI: https://dspace.lboro.ac.uk/2134/11870
Publisher Link: http://dx.doi.org/10.1177/1350650112463534
ISSN: 1350-6501
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Morris_et_al_IMechE_PartJ_2013.pdf693.31 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.