Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/11872

Title: Performance evaluation of piston compression ring through accelerated wear in engine tests
Authors: Morris, Nicholas J.
Rahnejat, Homer
Rahmani, Ramin
King, P.D.
Fitzsimons, Brian
Keywords: Piston Ring
Friction
Wear
Issue Date: 2012
Publisher: © ASME
Citation: MORRIS, N. ... et al., 2012. Performance evaluation of piston compression ring through accelerated wear in engine tests. IN: Proceedings of the Internal Combustion Engine Division Spring Technical Conference, ICEDSTC, May 6-9, 2012, Torino, Italy, Paper No. ICES2012-81201, pp. 1003-1008.
Abstract: Both the piston ring and cylinder bore experience wear throughout their life cycle. Therefore change occurs in the geometrical profile and topography of the ring. In addition, coating on the ring is also subject to wear, thus altering the physical/mechanical property of the contacting surface. These changes affect the tribological performance of the ring-bore conjunction. Geometrical changes often alter the ring contacting profile, which affects the entrainment of the lubricant into the conjunction. This can affect the regime of lubrication, thus mechanisms that contribute to friction. Wear of surfaces also plays some role in boundary friction in terms of topographical changes as well as surface properties such as hardness and asperity shear strength. Most analysis does not take into account changes in tribological conditions which occur as the result of these salient changes in practice. The paper intends to bridge this gap in the fundamental knowledge and provide explanations for some in-field experiences noted with wear of a compression ring in a typical engine test. The method of solution used is based on the average flow factors which are indicative of entrainment of the lubricant through the rough ring-bore conjunction. This approach was initiated by Patir and Cheng, for which realistic topographical parameters according to the stage of the wear process is included. Changes in friction and fuel energy consumed are predicted.
Description: Closed access. This item is available through the ASME Digital Library at: http://asmedigitalcollection.asme.org/index.aspx
Version: Accepted for publication
DOI: 10.1115/ICES2012-81201
URI: https://dspace.lboro.ac.uk/2134/11872
Publisher Link: http://dx.doi.org/10.1115/ICES2012-81201
ISBN: 978-0-7918-4466-3
Appears in Collections:Closed Access (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Morris_et_al_ASME2012.pdf396.21 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.