Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12032

Title: Distributed space time block coding in asynchronous cooperative relay networks
Authors: Elazreg, A.M.
Issue Date: 2013
Publisher: © Abdulghani Elazreg
Abstract: The design and analysis of various distributed space time block coding schemes for asynchronous cooperative relay networks is considered in this thesis. Rayleigh frequency flat fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing type transmission approach are employed to mitigate the synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied, and a new Alamouti space time block coding technique with parallel interference cancellation detection which does not require such a direct link connection and employs two relay nodes is proposed. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. Novel detection schemes are then proposed for decode-and-forward networks with closed-loop extended orthogonal coding which reduce the computational complexity of the parallel interference cancellation. Both sub-optimum and near-optimum detectors are presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approaches and their ability to mitigate synchronization errors. A relay selection approach is also formulated which maximizes spatial diversity gain and attains robustness to timing errors. Finally, a new closed-loop distributed extended orthogonal space time block coding solution for amplify-and-forward type networks which minimizes the number of feedback bits by using a cyclic rotation phase is presented. This approach utilizes an orthogonal frequency division multiplexing type transmission structure with a cyclic prefix to mitigate synchronization errors. End-to-end bit error performance evaluations verify the efficacy of the scheme and its success in overcoming synchronization errors.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/12032
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2013-Elazreg.pdf1.08 MBAdobe PDFView/Open
Form-2013-Elazreg.pdf324.88 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.