Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12118

Title: Development of numerical methods for the solution of integral equations
Authors: Morgan, Anthony P.G.
Issue Date: 1984
Publisher: © A.P.G. Morgan
Abstract: Recent surveys have revealed that the majority of numerical methods for the solution of integral equations use one of two main techniques for generating a set of simultaneous equations for their solution. Either the unknown function is expanded as a combination of basis set functions and the resulting coefficients found, or the integral is discretized using quadrature formulae. The latter results in simultaneous equations for the solution at the quadrature abscissae. The thesis proposes techniques based on various direct iterative methods, including refinements of residual correction which hold no restrictions for nonlinear integral equations. New implementations of successive approximations and Newton's method appear. The latter compares particularly well with other versions as the evaluation of the Jacobian can be made equivalent to the solution of matrix equations of relatively small dimensions. The method can be adapted to the solution of first-kind equations and has been applied to systems of integral equations. The schemes are designed to be adaptive with the aid of the progressive quadrature rules of Patterson or Clenshaw and Curtis and interpolation formulae. The Clenshaw-Curtis rule is particularly favoured as it delivers error estimates. A very powerful routine for the solution of a wide range of integral equations has resulted with the inclusion of a new efficient method for calculating singular integrals. Some work is devoted to the conversion of differential to integral or integro-differential equations and comparing the merits of solving a problem in its original and converted forms. Many equations are solved as test examples throughout the thesis of which several are of physical significance. They include integral equations for the slowing down of neutrons, the Lane-Emden equation, an equation arising from a chemical reactor problem, Chandrasekhar's isotropic scatter ing of radiation equation and the Blasius equation in boundary layer theory.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/12118
Appears in Collections:PhD Theses (Maths)

Files associated with this item:

File Description SizeFormat
Thesis-1984-Morgan.pdf3.82 MBAdobe PDFView/Open
Form-1984-Morgan.pdf34.19 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.