Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12164

Title: Development of a high speed, high efficiency LA-ICP-MS interface
Authors: Douglas, David N.
Keywords: Laser ablation-inductively coupled plasma-mass spectrometry
Laser ablation
Laser cell
ICP torch
Peak profiling
Issue Date: 2013
Publisher: © David Neil Douglas
Abstract: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is now a well established analytical technique used to sample solid materials and determine their elemental composition. Two areas that are becoming increasingly important, and for which LA-ICP-MS is a key tool, are bio-imaging and the analysis of micro-particulates. However, current instrumental designs limit the practicality of the technique for these applications. This study investigates the development of a high speed, high efficiency LA-ICP-MS interface through modelling of the flow dynamics of a newly designed laser ablation cell and experimental investigation of single laser pulse response. Through this work the Sniffer-Dual Concentric Injector interface was realised. This interface reduced particle residence times within the laser cell and transport tubing. The interface was also used to investigate turbulence related aerosol dispersion within the ICP and potential designs to overcome this. The resulting design yields an interface with improved sensitivity and reduced aerosol dispersion such that a lower limit of detection is achieved, important when considering the mass of analyte in a single cell or micro-particulate, compared to existing designs. Thus the interface can be used to improve image spatial resolution as the ablation spot size, and thus pixel information, can be reduced; and also reduces total analysis time. The calibration technique Laser Ablation of a Sample In Liquid (LASIL) was also investigated as a means of calibration for solid samples. The investigation lead to the development of LASIL in a droplet, a technique that can be used to calibrate solid samples when a matrix matched standard is unavailable. The mechanism of the technique resulted in an improved laser-energy sample coupling efficiency and a reduction in the liquid to ablated mass ratio, thus decreasing sampling time. As the technique captures the ablated particulate in solution, post chemistry techniques can be used to remove analyte interferences.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/12164
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File Description SizeFormat
Form-2013-Douglas.pdf144.6 kBAdobe PDFView/Open
Thesis-2013-Douglas.pdf2.78 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.