Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12779

Title: Enhanced electrochromic performance of nickel oxide-based ceramic precursor films
Authors: Sialvi, Muhammad Z.
Keywords: Electrochemical cathodic deposition
AACVD
Layer-by-layer
Nickel(II) hydroxide
Nickel(II) oxide
Electrochromic
Electrochromism
CIE chromaticity
Coordinates
Colorimetry
Issue Date: 2013
Publisher: © Muhammad Z. Sialvi
Abstract: An electrochromic (EC) material is able to change colour under the influence of an electric potential. The development of energy efficient smart windows for architectural applications is at present the subject of intense research for both economic and environmental reasons. Thus there is now a considerable research effort to develop smart windows with natural colour switching properties, i.e. shades of grey. In this regard, a promising metal oxide with a brown-black anodic colouring state is NiO or hydrated nickel oxide (also called nickel hydroxide , Ni(OH)2). The present work outlines the preparation and optimisation of EC nickel oxide-based ceramic precursor films onto various conducting substrates towards smart window applications. The literature review chapter outlines the different methods used for generating ceramic materials, a review of electrochromism and history of nickel oxide-based EC materials are also provided. Thins films have been deposited by an electrochemical cathodic deposition and by aerosol assisted chemical vapour deposition (AACVD) technique. For hydrated NiO films prepared by electrochemical cathodic deposition, various deposition factors at small-scale area (30 x 7 mm) have been investigated in order to optimise the films properties towards EC applications. With deposition on fluorine-doped tin oxide (SnO2:F, FTO) on glass, use of nickel nitrate (0.01 mol dm-3) solution at an applied current of -0.2 mA (-0.1 mA cm-2) for 800 s was optimal for preparing uniform deposits with a porous interconnecting flake-like structure, which is generally regarded as favourable for the intercalation/deintercalation of hydroxide ions during redox cycling. The as-deposited hydrated NiO films showed excellent transmittance modulation (Δ%T = 83.2 at 432 nm), with average colouration efficiency (CE) of 29.6 cm2 C-1 and low response times. However, after 50 voltammetric cycles, the cycle life was found to fade by 17.2% from charge measurements, and 28.8 % from in-situ transmittance spectra measurements. In an attempt to prepare films with improved durability, AACVD has been used for the first time in the preparation of thin-film EC nickel(II) oxide (NiO). The as-deposited films were confirmed to be cubic NiO from analysis of powder X-ray diffraction data, with an optical band gap that decreased from 3.61 to 3.48 eV with an increase in film thickness (in the range 330 820 nm). The EC properties of the films were investigated as a function of film thickness, following 50, 100 and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm-3). Light modulation of the films increased with the number of conditioning cycles. EC response times were < 10 s and generally longer for the colouration than the bleaching process. The films showed excellent stability when tested for up to 10000 colour/bleach cycles. Using a calculation method based on the integration of experimental spectral power distributions derived from in-situ visible region spectra over the CIE 1931 colour-matching functions, the colour stimuli of the NiO-based films, and the changes that take place on reversibly switching between the bleached and coloured forms have been calculated. Films prepared by both deposition techniques gave positive a* and b* values to produce orange. However, in combination with low L* values, the films were perceived as brown-grey. Hydrated NiO prepared via electrochemical cathodic deposition suffers from two well-known limitations; firstly, it shows catalytic properties towards the oxygen evolution reaction (OER), which is a process very close to the Ni(II)/Ni(III) redox process. Secondly, hydrated NiO shows poor cycling durability in alkaline solution. The co-deposition of single or bimetallic additives is an effective way to overcome these problems. Electrochemical studies revealed that the combination of cobalt (10%) with lanthanum (5%) was found to be the optimal composition for preparing hydrated NiO films with improved film durability. Finally, the emphasis of this work was on scale-up of deposition. Therefore, optimised deposition conditions from small scale (3.0 x 0.7 cm) have been used to successfully deposit films on two different sized large-area (10 x 7.5 and 30 x 30 cm) conducting substrates.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: Materials Research School, Loughborough University
URI: https://dspace.lboro.ac.uk/2134/12779
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File Description SizeFormat
Form-2013-Sialvi.pdf797.33 kBAdobe PDFView/Open
Thesis-2013-Sialvi.pdf12.8 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.