Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12908

Title: New reactions of metal-alkyne complexes
Authors: Davoile, Ryan J.
Issue Date: 2003
Publisher: © Ryan James Davoile
Abstract: This thesis describes the use of bimetallic alkyne complexes for use in variants of the Nicholas reaction. The heterobimetallic core provides a source of chiral control unlike previous protocols reported in the literature, as stereocontrol arises from the inherently chiral cobalt-molybdenum core of these complexes and not from an external source. The inherently chiral heterobimetallic complexes were utilised as efficient chiral auxiliaries for nucleophilic additions to both propargylic alkene and Nicholas salt complexes with a degree of stereocontrol also extending to intramolecular addition. 1,3-Dipolar cycioaddition to homo bimetallic and heterobimetallic enyne complexes to obtain isoxazoline ring systems was investigated, following a report in the literature. A novel homobimetallic 1,3-dipole was synthesised on opening of a cyclopropane, subsequel1tly trapping with a series of aldehyde and imines to efficiently form tetrahydrofuran and pyrrolidine ring structures. Chapter 1: An overview of developments of homobimetallic alkyne complexes in the Nicholas reaction as reported in the literature. Chapter 2: Highlights our research into the use of bimetallic alkyne complexes for use in organic synthesis. Chapter 3: Provides experimental data for our studies.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University
URI: https://dspace.lboro.ac.uk/2134/12908
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File Description SizeFormat
Thesis-2003-Davoile.pdf5.21 MBAdobe PDFView/Open
Form-2003-Davoile.pdf54.81 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.