Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/12974

Title: Using acoustic waves to induce high-frequency current oscillations in superlattices
Authors: Greenaway, M.T.
Balanov, Alexander G.
Fowler, D.R.
Kent, A.J.
Fromhold, T.M.
Issue Date: 2010
Publisher: © The American Physical Society
Citation: GREENAWAY, M.T. ... et al, 2010. Using acoustic waves to induce high-frequency current oscillations in superlattices. Physical Review B, 81 (23), 235313.
Abstract: We show that gigahertz acoustic waves in semiconductor superlattices can induce terahertz (THz) electron dynamics that depend critically on the wave amplitude. Below the threshold amplitude, the acoustic wave drags electrons through the superlattice with a peak drift velocity overshooting that produced by a static electric field. In this regime, single electrons perform drifting orbits with THz frequency components. When the wave amplitude exceeds the critical threshold, an abrupt onset of Bloch-type oscillations causes negative differential velocity. The acoustic wave also affects the collective behavior of the electrons by causing the formation of localized electron accumulation and depletion regions, which propagate through the superlattice, thereby producing self-sustained current oscillations even for very small wave amplitudes. We show that the underlying single-electron dynamics, in particular, the transition between the acoustic wave dragging and Bloch oscillation regimes, strongly influence the spatial distribution of the electrons and the form of the current oscillations. In particular, the amplitude of the current oscillations depends nonmonotonically on the strength of the acoustic wave, reflecting the variation in the single-electron drift velocity.
Description: This article was published in the journal Physical Review B [© The American Physical Society]. It is also available at: http://dx.doi.org/10.1103/PhysRevB.81.235313
Version: Published
DOI: 10.1103/PhysRevB.81.235313
URI: https://dspace.lboro.ac.uk/2134/12974
Publisher Link: http://dx.doi.org/10.1103/PhysRevB.81.235313
ISSN: 1098-0121
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
Greenaway_Acoustic waves_PRB10.pdf740.37 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.