Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13010

Title: Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model
Authors: Hillier, John K.
Smith, Mike J.
Keywords: Synthetic
Issue Date: 2012
Publisher: © 2012 Elsevier B.V.
Citation: HILLIER, J.K. and SMITH, M.J., 2012. Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model. Geomorphology, 153-154, pp. 61 - 73.
Abstract: Metrics such as height and volume quantifying the 3D morphology of landforms are important observations that reflect and constrain Earth surface processes. Errors in such measurements are, however, poorly understood. A novel approach, using statistically valid ‘synthetic’ landscapes to quantify the errors is presented. The utility of the approach is illustrated using a case study of 184 drumlins observed in Scotland as quantified from a Digital Elevation Model (DEM) by the ‘cookie cutter’ extraction method. To create the synthetic DEMs, observed drumlins were removed from the measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the ‘noise’ (e.g. trees) and regional trends (e.g. hills) that cause the errors. Then, errors in the cookie cutter extraction method were investigated by using it to quantify these ‘synthetic’ drumlins, whose location and size is known. Thus, the approach determines which key metrics are recovered accurately. For example, mean height of 6.8 m is recovered poorly at 12.5 ± 0.6 (2σ) m, but mean volume is recovered correctly. Additionally, quantification methods can be compared: A variant on the cookie cutter using an un-tensioned spline induced about twice (× 1.79) as much error. Finally, a previously reportedly statistically significant (p = 0.007) difference in mean volume between sub-populations of different ages, which may reflect formational processes, is demonstrated to be only 30–50% likely to exist in reality. Critically, the synthetic DEMs are demonstrated to realistically model parameter recovery, primarily because they are still almost entirely the original landscape. Results are insensitive to the exact method used to create the synthetic DEMs, and the approach could be readily adapted to assess a variety of landforms (e.g. craters, dunes and volcanoes).
Description: This article was published in the journal, Geomorphology [© 2012 Elsevier B.V.] and the definitive version is available at: http://dx.doi.org/10.1016/j.geomorph.2012.02.009
Version: Accepted for publication
DOI: 10.1016/j.geomorph.2012.02.009
URI: https://dspace.lboro.ac.uk/2134/13010
Publisher Link: http://dx.doi.org/10.1016/j.geomorph.2012.02.009
ISSN: 0169-555X
Appears in Collections:Published Articles (Geography and Environment)

Files associated with this item:

File Description SizeFormat
2012_3D_Land.pdfAccepted for publication2.24 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.