Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13027

Title: Stabilization of fine gravels by net-spinning caddisfly larvae
Authors: Johnson, Matthew F.
Reid, Ian
Rice, Stephen P.
Wood, Paul J.
Keywords: Ecosystem engineering
Hydropsychidae
Entrainment threshold
Shields parameter
Biofilm
Issue Date: 2009
Publisher: © John Wiley & Sons, Ltd.
Citation: JOHNSON, M.F. ... et al., 2009. Stabilization of fine gravels by net-spinning caddisfly larvae. Earth Surface Processes and Landforms, 34 (3), pp. 413 - 423.
Abstract: We examined the impact of Hydropsychidae caddisfly larvae on the incipient motion of two sizes of narrowly graded fine-gravel (4–6 and 6–8 mm). This impact was assessed relative to the collective impact of other abiotic and biotic processes that are potentially important conditioning agents of fine-gravels. Trays of gravel were placed in the River Soar, Leicestershire, UK, where they were colonized to natural densities by caddisfly larvae. Identical trays that were surrounded by a 250 μm mesh were also deployed, preventing colonization but allowing field conditioning of sediments, including minor reworking of grains and biofilm development. After 21 days in the river, trays were removed to a laboratory flume where grain entrainment stresses were established. In addition to the colonized and conditioned treatments, critical shear stresses were measured for identical sediments that were not placed in the river (laboratory gravels). Gravels that were colonized by Hydropsychidae required significantly greater shear stresses for entrainment than conditioned trays (p ≤ 0·002), however, there was no significant difference between conditioned and laboratory gravels. This implies that the presence of caddisfly can be a more important influence on fine-gravel stability than some conditioning processes. Shields parameter was compared across treatments and across the two gravel size-fractions using two-way ANOVA. No significant differences or interactions were observed, indicating that 4–6 mm gravel was stabilized to a similar degree as 6–8 mm gravel by conditioning and colonization processes. Our results extend earlier studies in two important ways: (1) entrainment stresses were established for fine gravels that were colonized at natural densities, under natural stream conditions; and (2) the caddisfly effect was measured relative to both field-conditioned and unconditioned laboratory controls. The temporal and spatial distribution of silk-spinning caddisfly larvae suggests that they have the potential to influence fine-sediment mobility in many rivers, worldwide.
Description: This article was submitted for publication in the journal, Earth Surface Processes and Landforms [© John Wiley & Sons, Ltd.] and the definitive version is available at: http://dx.doi.org/10.1002/esp.1750
Version: Submitted for publication
DOI: 10.1002/esp.1750
URI: https://dspace.lboro.ac.uk/2134/13027
Publisher Link: http://dx.doi.org/10.1002/esp.1750
ISSN: 0197-9337
Appears in Collections:Published Articles (Geography)

Files associated with this item:

File Description SizeFormat
Johnson_etal_submission with figs for LUPIN.pdfSubmitted version1.15 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.