Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13031

Title: Increase in coarse sediment transport associated with disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus)
Authors: Johnson, Matthew F.
Rice, Stephen P.
Reid, Ian
Keywords: Ecosystem engineering
Zoogeomorphology
Invasive species
Bedload transport
Imbrication
Issue Date: 2011
Publisher: © John Wiley & Sons, Ltd.
Citation: JOHNSON, M.F., RICE, S.P. and REID, I., 2011. Increase in coarse sediment transport associated with disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus). Earth Surface Processes and Landforms, 36 (12), pp. 1680 - 1692.
Abstract: There is growing acknowledgement of the interaction between animals and the river bed on which they live and the implications of biological activity for geomorphic processes. It has been observed that signal crayfish (Pacifastacus leniusculus) disturb gravel substrates, potentially promoting sediment transport and impacting ecological communities. However, the mechanisms involved and the extent of their impact remain poorly understood, especially in relation to other processes that affect grain mobility in gravel-bed rivers. A series of flume experiments, using loose and water-worked gravel beds of narrowly graded grain sizes that were exposed to 6 h of crayfish activity under low-velocity flows, showed a substantial increase in the number of grains entrained by subsequent higher-velocity flows when compared with control runs in which crayfish were never introduced. Crayfish alter the topography of their substrate by constructing pits and mounds, which affect grain protrusion. When walking and foraging, they also alter gravel fabric by reorienting and changing the friction angle of surface grains. In water-worked surfaces, this fabric rearrangement is shown to lead to a statistically significant, partial reversal of the structuring that had been achieved by antecedent flow. For these previously water-worked surfaces, the increase in entrainment arising from disturbance by crayfish was statistically significant, with grain transport nearly twice as great. This suggests that signal crayfish, an increasingly widespread invasive species in temperate latitudes beyond their native NW North America, have the potential to enhance coarse-grained bedload flux by altering the surface structure of gravel river beds and reducing the stability of surface grains. This study illustrates further the importance of acknowledging the impact of mobile organisms in conditioning the river bed when assessing sediment entrainment mechanics in the context of predicting bedload flux.
Description: This article was submitted for publication in the journal, Earth Surface Processes and Landforms [© John Wiley & Sons, Ltd.] and the definitive version is available at: http://dx.doi.org/10.1002/esp.2192
Version: Submitted for publication
DOI: 10.1002/esp.2192
URI: https://dspace.lboro.ac.uk/2134/13031
Publisher Link: http://dx.doi.org/10.1002/esp.2192
ISSN: 0197-9337
Appears in Collections:Published Articles (Geography)

Files associated with this item:

File Description SizeFormat
Increase in coarse sediment Pre-Review.pdfSubmitted version1.03 MBAdobe PDFView/Open