Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/1304

Title: Chiral phase states of the Hubbard Hamiltonian
Authors: Kusmartsev, F.V.
Ristig, M.L.
Issue Date: 1991
Publisher: © American Physical Society
Citation: KUSMARTSEV, F.V., 1991. Chiral phase states of the Hubbard Hamiltonian. Physical Review B 44(10), pp. 5351–5354
Abstract: We present a variational approach different from that based on Gutzwiller’s ansatz by investigating chiral flux-phase states of the Hubbard Hamiltonian in analogy to the treatment of the fractional quantum Hall effect. The proposed class of generalized Laughlin trial functions is specialized to permit detailed consideration of a set of states that includes a ferromagnetic ground state generated by a spontaneous gauge field in conjunction with a fictitious magnetic field having a flux commensurate with the filling. We evaluate the trial energy expectation values and demonstrate that the treatment is, at least, appropriate for the Hubbard model with sufficiently large on-site Coulomb repulsion and low electron densities. The members of the special set of trial states may be suitably classified by the flux quanta of the associated field and may be characterized either by integer or fractional quantum numbers. The excitations designated by fractional quantum numbers, which are not commensurate with the filling, are identified as flux-phase states breaking the symmetries of the lattice.
Description: This article has been published in the journal, Physical Review B [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRB/v44/p5351.
URI: https://dspace.lboro.ac.uk/2134/1304
ISSN: 0556-2805
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
0p5351_1.pdf680.03 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.