Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13131

Title: Analysis of fracture processes in cortical bone tissue
Authors: Li, Simin
Abdel-Wahab, Adel A.
Silberschmidt, Vadim V.
Keywords: Fracture toughness
Cortical bone
Extended finite element (X-FEM)
Issue Date: 2013
Publisher: © Elsevier
Citation: LI, S., ABDEL-WAHAB, A. and SILBERSCHMIDT, V.V., 2013. Analysis of fracture processes in cortical bone tissue. Engineering Fracture Mechanics, 110, pp. 448–458
Abstract: Bones are the principal structural components of a skeleton; they play unique roles in the body providing its shape maintenance, protection of internal organs and transmission of forces. Ultimately, their structural integrity is vital for the quality of life. Unfortunately, bones can only sustain loads until a certain limit, beyond which they fail. Understanding a fracture behaviour of bone is necessary for prevention and diagnosis of trauma; this can be achieved by studying mechanical properties of bone, such as its fracture toughness. Generally, most of bone fractures occur in long bones consisting mostly of cortical bone tissue. Therefore, in this paper, an experimental study and numerical simulations of fracture processes in a bovine femoral cortical bone tissue were considered. A set of experiments was conducted to characterise fracture toughness of the bone tissue in order to gain basic understanding of spatial variability and anisotropy of its resistance to fracture and its link to an underlying microstructure. The data was obtained using single-edge-notch-bending specimens of cortical bone tested in a three-point bending setup; fracture surfaces of specimens were studied using scanning electron microscopy. Based on the results of those experiments, a number of finite-element models were developed in order to analyse its deformation and fracture using the extended finite-element method (X-FEM). Experimental results of this study demonstrate both variability and anisotropy of fracture toughness of the cortical bone tissue; the developed models adequately reflected the experimental data.
Description: This article has been published in the journal, Engineering Fracture Mechanics [© Elsevier Ltd]. The definitive version is available at: http://dx.doi.org/10.1016/j.engfracmech.2012.11.020
Version: Accepted for publication
DOI: 10.1016/j.engfracmech.2012.11.020
URI: https://dspace.lboro.ac.uk/2134/13131
Publisher Link: http://dx.doi.org/10.1016/j.engfracmech.2012.11.020
ISSN: 0013-7944
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
EFM-LUPIN.pdfAccepted version698.84 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.