Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13208

Title: Estimation of bluff body transient aerodynamic loads using an oscillating model rig
Authors: Mansor, Shuhaimi
Issue Date: 2006
Publisher: © Shuhaimi Mansor
Abstract: A method for the estimation of transient aerodynamic data from dynamic wind tunnel tests has been developed and employed in the study of the unsteady response of simple automotive type bodies. The experimental setup consists of the test model mounted to the oscillating model facility such that it is constrained to oscillate with a single degree of freedom of pure yawing motion. The yaw position is recorded from a potentiometer and the time response provides the primary measurement. Analysis of the wind-off and wind-on response allows the transient aerodynamic loads to be estimated. The frequency of oscillation, (synonymous with the frequency of disturbing wind input) is modified by altering the mechanical stiffness of the facility. The effects of Reynolds number and oscillation frequency are considered and the model is shown to exhibit damped, self-sustained and self-excited behaviour. The transient results are compared with a quasi-steady prediction based on conventional tunnel balance data and presented in the form of aerodynamic magnification factor. The facility and analysis techniques employed are presented and the results of a parametric study of model rear slant angle and of the influence of C-pillar strakes is reported. The results are strongly dependent on shape but for almost all rear slant angles tested the results show that the transient response exceeds that predicted from steady state data. The level of unsteadiness is also significantly influenced by the rear slant angles. The addition of C-pillar strakes is shown to stabilise the flow with even small strakes yielding responses below that of steady state. From the simulation results the self-sustained oscillation is shown to occur when the aerodynamic damping cancels the mechanical damping. The unsteadiness in the oscillation can be simulated by adding band-limited white noise with an intensity close to that of the turbulence intensity found in the wake. From vehicle crosswind simulation results the aerodynamic yaw moment derivative and its magnification factor are shown to be the important parameters influencing the crosswind sensitivity and path deviation.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/13208
Appears in Collections:PhD Theses (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2006-Mansor.pdf17.51 MBAdobe PDFView/Open
Form-2006-Mansor.pdf63.55 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.