Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13435

Title: Extending relational model transformations to better support the verification of increasingly autonomous systems
Authors: Callow, Glenn
Keywords: Autonomous systems
Systems engineering
System verification
Domain specific modelling (DSM)
Model transformation
Meta-modelling
Partial model completion
QVT-relations
Issue Date: 2013
Publisher: © Glenn Callow
Abstract: Over the past decade the capabilities of autonomous systems have been steadily increasing. Unmanned systems are moving from systems that are predominantly remotely operated, to systems that include a basic decision making capability. This is a trend that is expected to continue with autonomous systems making decisions in increasingly complex environments, based on more abstract, higher-level missions and goals. These changes have significant implications for how these systems should be designed and engineered. Indeed, as the goals and tasks these systems are to achieve become more abstract, and the environments they operate in become more complex, are current approaches to verification and validation sufficient? Domain Specific Modelling is a key technology for the verification of autonomous systems. Verifying these systems will ultimately involve understanding a significant number of domains. This includes goals/tasks, environments, systems functions and their associated performance. Relational Model Transformations provide a means to utilise, combine and check models for consistency across these domains. In this thesis an approach that utilises relational model transformation technologies for systems verification, Systems MDD, is presented along with the results of a series of trials conducted with an existing relational model transformation language (QVT-Relations). These trials identified a number of problems with existing model transformation languages, including poorly or loosely defined semantics, differing interpretations of specifications across different tools and the lack of a guarantee that a model transformation would generate a model that was compliant with its associated meta-model. To address these problems, two related solvers were developed to assist with realising the Systems MDD approach. The first solver, MMCS, is concerned with partial model completion, where a partial model is defined as a model that does not fully conform with its associated meta-model. It identifies appropriate modifications to be made to a partial model in order to bring it into full compliance. The second solver, TMPT, is a relational model transformation engine that prioritises target models. It considers multiple interpretations of a relational transformation specification, chooses an interpretation that results in a compliant target model (if one exists) and, optionally, maximises some other attribute associated with the model. A series of experiments were conducted that applied this to common transformation problems in the published literature.
Description: A dissertation thesis submitted in partial fulfilment of the requirements for the award of the degree Doctor of Engineering (EngD), at Loughborough University.
Sponsor: EPSRC / BAE Systems
URI: https://dspace.lboro.ac.uk/2134/13435
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Form-2013-Callow.pdf594.48 kBAdobe PDFView/Open
Thesis-2013-Callow.pdf21.41 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.