Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13528

Title: Selection of return channels and recovery options for used products
Authors: Lamsali, Hendrik
Keywords: Product recovery options
Product return channels
Reverse logistics
Lagrangian relaxation
Optimization
MINLP
Issue Date: 2013
Publisher: © Hendrik Lamsali
Abstract: Due to legal, economic and socio-environmental factors, reverse logistics practices and extended producer responsibility have developed into a necessity in many countries. The end results and expectations may differ, but the motivation remains the same. Two significant components in a reverse logistics system -product recovery options and return channels - are the focus of this thesis. The two main issues examined are allocation of the returned products to recovery options, and selection of the collection methods for product returns. The initial segment of this thesis involves the formulation of a linear programming model to determine the optimal allocation of returned products differing in quality to specific recovery options. This model paves the way for a study on the effects of flexibility on product recovery allocation. A computational example utilising experimental data was presented to demonstrate the viability of the proposed model. The results revealed that in comparison to a fixed match between product qualities and recovery options, the product recovery operation appeared to be more profitable with a flexible allocation. The second segment of this thesis addresses the methods employed for the initial collection of returned products. A mixed integer nonlinear programming model was developed to facilitate the selection of optimal collection methods for these products. This integrated model takes three different initial collection methods into consideration. The model is used to solve an illustrative example optimally. However, as the complexity of the issue renders this process ineffective in the face of larger problems, the Lagrangian relaxation method was proposed to generate feasible solutions within reasonable computational times. This method was put to the test and the results were found to be encouraging.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/13528
Appears in Collections:PhD Theses (Business School)

Files associated with this item:

File Description SizeFormat
Thesis-2013-Lamsali.pdf896.46 kBAdobe PDFView/Open
Form-2013-Lamsali.pdf915.12 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.