Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13575

Title: Insights into cold-start disi combustion in an optical engine operating at -7°C
Authors: Efthymiou, Petros
Davy, Martin H.
Garner, Colin P.
Hargrave, Graham K.
Rimmer, John E.T.
Richardson, Dave
Issue Date: 2013
Publisher: © SAE International
Citation: EFTHYMIOU, P. ... et al., 2013. Insights into cold-start disi combustion in an optical engine operating at -7°C. SAE International Journal of Engines, 6 (2), pp. 1059 - 1074.
Abstract: Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C. A high-speed 9 kHz optical investigation of the in-cylinder combustion and fuel spray along with incylinder pressure measurements was completed with the engine motored and fired at 1500 rpm during homogeneous and stoichiometric combustion conditions. Results show striking differences between the flame growth structures at various operating conditions with the notable presence of significant fuel-rich regions which are understood to be prominent areas of PM formation. Measured engine performance parameters such as Indicated Mean Effective Pressure (IMEP) and Mass Fraction Burned (MFB) times correlated with the observed differences in combustion characteristics and flame growth speed. Flash boiling of the fuel spray was present in the fully heated engine case and significantly reduced the penetration of the spray plume and the likelihood of piston crown and cylinder liner impingement. A clear link was shown between operating temperature, engine performance and in-cylinder combustion parameters which contribute to the formation of PM. Copyright © 2013 SAE International.
Description: Copyright © 2013 SAE International. This paper is posted on this site with permission from SAE International, and is for viewing only. Further use or distribution of this paper is not permitted without permission from SAE. This article was published in the journal, SAE International Journal of Engines [© SAE International] and the definitive version is available at: http://dx.doi.org/10.4271/2013-01-1309
Version: Accepted for publication
DOI: 10.4271/2013-01-1309
URI: https://dspace.lboro.ac.uk/2134/13575
Publisher Link: http://dx.doi.org/10.4271/2013-01-1309
ISSN: 1946-3936
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Insights into Cold-Start FINAL.pdfAccepted version3.19 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.