Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13610

Title: Real-time FGPA implementation of a neuromorphic pitch detection system
Authors: Temple, Arthur Robert
Issue Date: 1999
Publisher: © Arthur Robert Temple
Abstract: This thesis explores the real-time implementation of a biologically inspired pitch detection system in digital electronics. Pitch detection is well understood and has been shown to occur in the initial stages of the auditory brainstem. By building such a system in digital hardware we can prove the feasibility of implementing neuromorphic systems using digital technology. This research not only aims to prove that such an implementation is possible but to investigate ways of achieving efficient and effective designs. We aim to achieve this complexity reduction while maintaining the fine granularity of the signal processing inherent in neural systems. By producing an efficient design we present the possibility of implementing the system within the available resources, thus producing a demonstrable system. This thesis presents a review of computational models of all the components within the pitch detection system. The review also identifies key issues relating to the efficient implementation and development of the pitch detection system. Four investigations are presented to address these issues for optimal neuromorphic designs of neuromorphic systems. The first investigation aims to produce the first-ever digital hardware implementation of the inner hair cell. The second investigation develops simplified models of the auditory nerve and the coincidence cell. The third investigation aims to reduce the most complex stage of the system, the stellate chopper cell array. Finally, we investigate implementing a large portion of the pitch detection system in hardware. The results contained in this thesis enable us to understand the feasibility of implementing such systems in real-time digital hardware. This knowledge may help researchers to make design decisions within the field of digital neuromorphic systems.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/13610
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-1999-Temple.pdf7.96 MBAdobe PDFView/Open
Form-1999-Temple.pdf38.68 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.