Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13653

Title: A preconditioned Chebyshev iterative method for solving symmetric and unsymmetric linear systems
Authors: Kammoonah, Mohamed A.M.S.
Issue Date: 1978
Publisher: © Mohamed Ali M.S. Kammoonah
Abstract: In this thesis the application of preconditioning to the Chebyshev iterative method is presented. Large, sparse, symmetric and unsymmetric linear systems which are derived from the finite difference discretization of second order (self-adjoint) partial differential equations over a rectangular domain are obtained and solved by a second order iterative method based on the scaled and translated Chebyshev polynomials in a preconditioned form. Further, using a formula previously given for the optimum preconditioning parameter, an adaptive procedure is presented for deriving this value efficiently for a variety of boundary value problems. A numerical example is described and experimental results are obtained which confirm the theory.
Description: A Master's Thesis. Submitted in partial fulfilment of the requirements for the award of Master of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/13653
Appears in Collections:MPhil Theses (Computer Science)

Files associated with this item:

File Description SizeFormat
Thesis-1978-Kammoonah.pdf3.34 MBAdobe PDFView/Open
Form-1978-Kammoonah.pdf43.6 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.