Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13771

Title: Spectroscopic and electrochemical sensing of anions and cations using novel receptor molecules
Authors: Weightman, John S.
Issue Date: 1996
Publisher: © John S. Weightman
Abstract: The aim of the project was to extend the field of molecular recognition of anions and cations of biochemical, medical, chemical and environmental importance. This was achieved by the use of a number of novel receptor molecules that are designed to bind anionic and cationic guests. The binding of the guest anions and cations was probed by various electrochemical, spectrochemical and IH NMR spectroscopy techniques. The receptor molecules studied included (i) ruthenium(II) trisbipyridyl complexes of acyclic, calix[4]arene and cyclic 2,2'-bipyridine ligands, (ii) the macrocycle Nphenylaza- 15-crown-5, and (iii) crown ether derivatives of diquat. These receptor molecules have been shown to sense anions and cations, such as chloride, bromide, dihydrogen phosphate, sodium, lithium and magnesium. Interestingly, one of diquat crown ether derivatives has been shown to complex both anions and cations at the same time. This is an important development, as the simultaneous molecular trapping of anions and cations in such systems is seen as a possible alternative to the use of ion exchange resins. With a view to producing spectrochemical and/or electrochemical sensor systems, work has been completed by the immobilisation of the novel receptor molecules. This has been achieved by the electropolymerisation of vinyl-substituted ruthenium(Il) trisbipyridyl complexes or the immobilisation of receptor molecules in a polyvinylchloride (PVC) matrix. The latter technique has been particularly successful and has led to the construction of a battery-powered fluorescence detector which has been used for anion sensing.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/13771
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File Description SizeFormat
Thesis-1996-Weightman.pdf6.92 MBAdobe PDFView/Open
Form-1996-Weightman.pdf46.35 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.