Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/13989

Title: Analytical evaluation of fitted piston compression ring: modal behaviour and frictional assessment
Authors: Baker, Christopher E.
Rahnejat, Homer
Rahmani, Ramin
Theodossiades, Stephanos
Issue Date: 2011
Publisher: © SAE
Citation: BAKER, C.E. ... et al, 2011. Analytical evaluation of fitted piston compression ring: modal behaviour and frictional assessment. SAE Technical Paper; 2011-01-1535, 16pp.
Abstract: Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring. The conjunctional friction, comprising viscous shear of the lubricant and any boundary friction as the result of direct interaction of surfaces also act on the ring, as well as the inertial force in the axial direction of the cylinder. Therefore, ring motions are quite complex. However, with properly fitted rings, the radial modal behaviour of the ring is the most important. This provides an opportunity to determine the in-situ ring shape analytically by assuming a series of quasi-static steps in which the balance between ring tension and pressure induced forces with the instantaneous contact force is assumed. The resulting ring shape yields the ring-bore gap, allowing the determination of frictional losses for a given bore out-of-roundness and surface topography. A subsequent analysis based upon one dimensional lubricated conjunction for certain ring configurations enables evaluation of lubricant flow and any chance of oil loss and blow-by. This fully analytical as opposed to computationally intensive numerical analysis is verified with FEA. Copyright © 2011 SAE International.
Description: This article was originally presented at the SAE 2011 Noise and Vibration Conference and Exhibition, May 16th-19th 2011, Grand Rapids, Michigan, USA. Copyright © 2011 SAE International. This paper is posted on this site with permission from SAE International. It may not be shared, downloaded, duplicated, printed or transmitted in any manner, or stored on any additional repositories or retrieval system without prior written permission from SAE.
Version: Accepted for publication
DOI: 10.4271/2011-01-1535
URI: https://dspace.lboro.ac.uk/2134/13989
Publisher Link: http://dx.doi.org/10.4271/2011-01-1535
ISSN: 0148-7191
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Baker_et_al_SAE_2011.pdfAccepted version1.2 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.