Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/14353

Title: Effect of force of microneedle insertion on the permeability of insulin in skin
Authors: Cheung, Karmen
Han, Tao
Das, Diganta Bhusan
Keywords: Insertion force
Issue Date: 2014
Publisher: Sage / © Diabetes Technology Society
Citation: CHEUNG, K., HAN, T. and DAS, D.B., 2014. Effect of force of microneedle insertion on the permeability of insulin in skin. Journal of Diabetes Science and Technology, 8 (3), pp. 444-452.
Abstract: Many experiments conducted in the literature have investigated the effect of microneedles (MNs) on insulin permeation across skin. There are also a number of articles that deal with the effect of MN insertion force in skin. However, there is little known on quantifying the relationship between the effect of MN insertion force and the amount of insulin permeated for given MNs. This issue is addressed in this article. MNs of 1100 μm and 1400 μm are used to conduct in vitro permeability experiments on porcine skin, using insulin. Histological images of MN treated skin are obtained from a microtome and the viscoelastic properties of the skin sample are measured using a rheometer. An in-house insertion force device is utilized that can reproducibly apply a specified force on MNs for a set period of time using compressed air. It is deduced that when porcine skin was pretreated with an applied force of 60.5 N and 69.1 N, the resultant amount of insulin permeated was approximately 3 μg and 25 μg over a 4-hour period for the MNs used. The amount of MN force applied to porcine skin was shown to be related to the amount of insulin permeated. An increase in insertion force increase the amount of insulin permeated. It was also demonstrated that using insufficient force may have reduced or prevented the amount of insulin passing through the skin, regardless of the geometry of the MNs.
Description: This is an Open Access Article. It is published by Sage on behalf of the Diabetes Technology Society under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
Sponsor: This work was partly supported by Loughborough University, UK and EPSRC, UK.
Version: Published
DOI: 10.1177/1932296813519720
URI: https://dspace.lboro.ac.uk/2134/14353
Publisher Link: http://dx.doi.org/10.1177/1932296813519720
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
J1932296813519720.full.pdfPublished version761.56 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.