Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/14461

Title: Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 yr
Authors: Mills, Keely
Ryves, David B.
Anderson, N. John
Bryant, C.L.
Tyler, J.J.
Issue Date: 2013
Publisher: Copernicus Publications on behalf of the European Geosciences Union / © The Authors
Citation: MILLS, K. ... et al, 2013. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 yr. Climate of the Past, 9 (5), pp. 5183 - 5226
Abstract: Equatorial East Africa has a complex, regional patchwork of climate regimes, with multiple interacting drivers. Recent studies have focussed on large lakes and reveal signals that are smoothed in both space and time, and, whilst useful at a continental scale, are of less relevance when understanding short-term, abrupt or immediate impacts of climate and environmental changes. Smaller-scale studies have highlighted spatial complexity and regional heterogeneity of tropical palaeoenvironments in terms of responses to climatic forcing (e.g. the Little Ice Age [LIA]) and questions remain over the spatial extent and synchroneity of climatic changes seen in East African records. Sediment cores from paired crater lakes in western Uganda were examined to assess ecosystem response to long-term climate and environmental change as well as testing responses to multiple drivers using redundancy analysis. These archives provide annual to sub-decadal records of environmental change. The records from the two lakes demonstrate an individualistic response to external (e.g. climatic) drivers, however, some of the broader patterns observed across East Africa suggest that the lakes are indeed sensitive to climatic perturbations such as a dry Mediaeval Climate Anomaly (MCA; 1000–1200 AD) and a relatively drier climate during the main phase of the LIA (1500–1800 AD); though lake levels in western Uganda do fluctuate. The relationship of Ugandan lakes to regional climate drivers breaks down c. 1800 AD, when major changes in the ecosystems appear to be a response to sediment and nutrient influxes as a result of increasing cultural impacts within the lake catchments. The data highlight the complexity of individual lake response to climate forcing, indicating shifting drivers through time. This research also highlights the importance of using multi-lake studies within a landscape to allow for rigorous testing of climate reconstructions, forcing and ecosystem response.
Description: This is an Open Access Article. It is published by Copernicus Publications under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
Sponsor: This work was completed by K. Mills as part of a Ph.D. carried out at and funded by Loughborough University. Financial support for the fieldwork was provided through NERC (UK) within a New Investigators’ Competition award (NE/D000157/1) to DBR. Radiocarbon dating was supported by the NERC Radiocarbon Facility NRCF010001 (allocation num5 bers 1233.0407 and 1264.1007).
Version: Published
DOI: 10.5194/cpd-9-5183-2013
URI: https://dspace.lboro.ac.uk/2134/14461
Publisher Link: http://dx.doi.org/10.5194/cpd-9-5183-2013
ISSN: 1814-9324
Appears in Collections:Published Articles (Geography)

Files associated with this item:

File Description SizeFormat
Expressions of climate pertubations.pdfPublished version6.56 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.