Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/15140

Title: Ultra-short pulsed non-equilibrium atmospheric pressure gas discharges
Authors: Walsh, James L.
Keywords: Gas discharge
Plasma jet
Issue Date: 2008
Publisher: © James Leon Walsh
Abstract: This thesis presents experimental studies of various non-thermal atmospheric pressure gas discharges generated using short pulsed excitation as an alternative to widely used sinusoidal excitation. Several pulse generators are detailed that provide high voltage pulses ranging from hundreds of microseconds to less than ten nanoseconds in duration. A key enabler to the generation of a stable discharge is a suitably high repetition rate; this prerequisite precludes many conventional pulsed power technologies. Fortunately, recent advances in semiconductor technology have made it possible to construct solid state switches capable of producing high voltage pulses with repetition rates of many kilohertz. Pulsed excitation introduces many opportunities to tailor the applied voltage and consequently enhance the discharge which are not possible with sinusoidal excitation sources. Through detailed electrical and optical analysis it is shown that pulsed excitation is not only more energy efficient than a comparable sinusoidal source but produces a higher flux of excited species that are essential in many applications. When pulse widths are reduced to a sub-microsecond timescale a novel barrier-free mode of operation is observed. It is shown that diffuse large area plasmas are easily produced at kilohertz repetition rates without the usually indispensable dielectric barriers. Experimental results show that a short pulse width prevents the onset of the undesirable glow-to-arc transition thus introducing an added degree of stability. A further benefit of pulsed excitation is the ability to produce gas discharges with a high instantaneous peak power yet low average power consumption, resulting in a high density plasma that exhibits roomtemperature characteristics. Finally, as an acid test to highlight the many benefits of pulsed excitation several real-world applications are considered. It is shown that in all cases pulsed gas discharges provide real benefits compared to their sinusoidal counterparts.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/15140
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2008-Walsh.pdf36.92 MBAdobe PDFView/Open
Form-2008-Walsh.pdf788.42 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.