Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/15195

Title: Numerical simulation of laser machining of carbon-fibre-reinforced composites
Authors: Negarestani, R.
Marimuthu, Sundar
Sheikh, M.A.
Mativenga, P.
Li, Lin
Li, Z.L.
Chu, P.L.
Khin, C.C.
Zheng, H.Y.
Lim, G.C.
Keywords: Finite element modelling
Laser cutting
355nm DPSS Nd:YVO4 laser
Issue Date: 2010
Publisher: Sage Publications on behalf of the Institution of Mechanical Engineers
Citation: NEGARESTANI, R. ... et al, 2010. Numerical simulation of laser machining of carbon-fibre-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224 (7), pp. 1017-1027
Abstract: The growing use of carbon-fibre-reinforced polymer (CFRP) composites as high-performance lightweight materials in aerospace and automotive industries demands efficient and low-cost machining technologies. The use of laser machining for cutting and drilling composites is attractive owing to its high speed, flexibility, and ease of automation. However, the anisotropic material properties of composites, and issues related to the heat-affected zone (HAZ), charring, and potential delamination during laser processing, are major obstacles in its industrial applications. In order to improve the quality and dimensional accuracy of CFRP laser machining, it is important to understand the mechanism of the transient thermal behaviour and its effect on material removal. Based on the ‘element death’ technique of the finite element (FE) method, a three-dimensional model for simulating the transient temperature field and subsequent material removal has been developed, for the first time, on a heterogeneous fibre—matrix mesh. In addition to the transient temperature field, the model also predicts the dimensions of the HAZ during the laser machining process. Experimental results obtained with same process variables using a 355 nm DPSS Nd:YVO4 laser were used to validate the model. Based on the investigation, the mechanism of material removal in laser composite machining is proposed. The results suggest that the employed FE approach can be used to simulate pulsed laser cutting of fibre-reinforced polymer composites.
Description: This article is closed access.
Version: Published
DOI: 10.1243/09544054JEM1662
URI: https://dspace.lboro.ac.uk/2134/15195
Publisher Link: http://dx.doi.org/10.1243/09544054JEM1662
ISSN: 0954-4054
Appears in Collections:Closed Access (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Numerical Simulation of Laser Machining of Carbon Fibre Reinforced Composites.pdfPublished version403.44 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.