Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/15787

Title: Ultrasonic wave propagation in concentrated slurries - the modelling problem
Authors: Challis, Richard E.
Pinfield, Valerie J.
Keywords: Ultrasound
Viscosity
Scattering
Core-shell
Issue Date: 2014
Publisher: © Elsevier
Citation: CHALLIS, R.E. and PINFIELD, V.J., 2014. Ultrasonic wave propagation in concentrated slurries - the modelling problem. Ultrasonics, 54 (7), pp. 1737-1744.
Abstract: The suspended particle size distribution in slurries can, in principle, be estimated from measured ultrasonic wave attenuation across a frequency band in the 10s of MHz range. The procedure requires a computational model of wave propagation which incorporates scattering phenomena. These models fail at high particle concentrations due to hydrodynamic effects which they do not incorporate. This work seeks an effective viscosity and density for the medium surrounding the particles, which would enable the scattering model predictions to match experimental data for high solids loading. It is found that the required viscosity model has unphysical characteristics leading to the conclusion that a simple effective medium modification to the ECAH/LB is not possible. The paper confirms the successful results which can be obtained using core-shell scattering models, for smaller particles than had previously been studied, and outlines modifications to these which would permit rapid computation of sufficient stability to support fast particle sizing procedures.
Description: This is the author’s version of a work that was accepted for publication in Ultrasonics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ultrasonics, 54 (7), 2014, DOI: 10.1016/j.ultras.2014.04.003
Version: Accepted for publication
DOI: 10.1016/j.ultras.2014.04.003
URI: https://dspace.lboro.ac.uk/2134/15787
Publisher Link: http://dx.doi.org/10.1016/j.ultras.2014.04.003
ISSN: 0041-624X
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
ChallisPinfieldslurries revised final with figs.pdfAccepted version1.13 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.