Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/15816

Title: Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs
Authors: Sharples, Adam
Player, Darren J.
Martin, Neil R.W.
Mudera, Vivek
Stewart, Claire E.
Lewis, Mark P.
Issue Date: 2012
Publisher: © The Authors. Aging Cell © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland
Citation: SHARPLES, A. ... et al., 2012. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs. Aging Cell, 11 (6), pp. 986 - 995.
Abstract: Summary: Degeneration of skeletal muscle (SkM) with age (sarcopenia) is a major contributor to functional decline, morbidity and mortality. Methodological implications often make it difficult to embark on interventions in already frail and diseased elderly individuals. Using in vitro three-dimensional (3D) bioengineered skeletal muscle constructs that model aged phenotypes and incorporate a representative extracellular matrix (collagen), are under tension, and display morphological and transcript expression of mature skeletal muscle may more accurately characterize the SkM niche. Furthermore, an in vitro model would provide greater experimental manipulation with regard to gene, pharmacological and exercise (mechanical stretch/electrical stimulation) therapies and thus strategies for combating muscle wasting with age. The present study utilized multiple population-doubled (MPD) murine myoblasts compared with parental controls (CON), previously shown to have an aged phenotype in monolayer cultures (Sharples, 2011), seeded into 3D type I collagen matrices under uniaxial tension. 3D bioengineered constructs incorporating MPD cells had reduced myotube size and diameter vs. CON constructs. MPD constructs were characterized by reduced peak force development over 24h after cell seeding, reduced transcript expression of remodelling matrix metalloproteinases, MMP2 and MMP9, with reduced differentiation/hypertrophic potential shown by reduced IGF-I, IGF-IR, IGF-IEa, MGF mRNA. Increased IGFBP2 and myostatin in MPD vs. CON constructs also suggested impaired differentiation/reduced regenerative potential. Overall, 3D bioengineered skeletal muscle constructs represent an in vitro model of the in vivo cell niche with MPD constructs displaying similar characteristics to ageing/atrophied muscle in vivo, thus potentially providing a future test bed for therapeutic interventions to contest muscle degeneration with age. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Description: Closed access.
Version: Published
DOI: 10.1111/j.1474-9726.2012.00869.x
URI: https://dspace.lboro.ac.uk/2134/15816
Publisher Link: http://dx.doi.org/10.1111/j.1474-9726.2012.00869.x
ISSN: 1474-9718
Appears in Collections:Closed Access (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat
REF_2014_#1.pdfPublished version549.36 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.