Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/15822

Title: Androgens affect myogenesis in vitro and increase local IGF-1 expression
Authors: Sculthorpe, Nicholas
Solomon, Andrew M.
Sinanan, Andrea C.M.
Bouloux, Pierre-Marc G.
Grace, Fergal
Lewis, Mark P.
Issue Date: 2012
Publisher: © American College of Sports Medicine
Citation: SCULTHORPE, N. ... et al., 2012. Androgens affect myogenesis in vitro and increase local IGF-1 expression. Medicine and Science in Sports and Exercise, 44 (4), pp. 610 - 615.
Abstract: Purpose: The mechanism whereby anabolic androgens are associated with hypertrophy of skeletal muscle is incompletely understood but may involve an interaction with locally generated insulin-like growth factor (IGF) 1. The present investigation utilized a cell culture model of human skeletal muscle-derived cell maturation to test the hypothesis that androgens increase differentiation of human muscle precursor cells in vitro and to assess effects of androgen with or without IGF-1 on IGF-1 messenger RNA (mRNA) expression in human muscle precursor cells. Methods: Differentiation of muscle-derived cells was induced under standard low-serum conditions. Cultures were then exposed to androgen (testosterone (T)) at 50, 100, and 500 nM or IGF-1 (10-50 ng•mL ). Immunocytochemistry and real-time polymerase chain reaction (RT-PCR) were used to assess effects of androgens and IGF-1 after 3-(early) or 7-d (late) muscle differentiation, respectively; RT-PCR was used to quantify the effects on androgen receptor expression. Results: Under low-serum conditions, 3-d exposure to androgens or IGF-1 or both resulted in no significant increase in cellular myogenic commitment. After 7-d exposure, however, T and IGF-1 were both found to increase fusion index with no observable synergistic effect. T also increased IGF-1 mRNA generation (P < 0.0001), whereas exogenous IGF-1 (P < 0.001) reduced IGF-1 mRNA transcription relative to control. The T effect was reversible after treatment with flutamide, an androgen receptor antagonist. Conclusions: Both T and IGF-1 increase myogenic commitment after 7-d exposure to a differentiation medium. With T causing a concomitant increase in IGF-1 mRNA underpinning IGF-1 as a central mediator in the cellular pathways associated with muscle hypertrophy, including those affected by androgens. The novel system described has the potential for elucidating the pattern of growth factor effects associated with androgens in skeletal muscle. © 2012 by the American College of Sports Medicine.
Description: Closed access.
Sponsor: This work was supported by the Ipsen Fund, the Society for Endocrinology (A.M.S.), the Wellcome Trust, the Eastman Foundation for Oral Research and Training (M.P.L.), and University College London (P.B.M.G.).
Version: Published
DOI: 10.1249/MSS.0b013e318237c5c0
URI: https://dspace.lboro.ac.uk/2134/15822
Publisher Link: http://dx.doi.org/10.1249/MSS.0b013e318237c5c0
ISSN: 0195-9131
Appears in Collections:Closed Access (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat
REF_2014_#2.pdfPublished version2.8 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.