Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16052

Title: Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft-core fluid
Authors: Archer, Andrew J.
Evans, Robert
Roth, Roland
Oettel, M.
Issue Date: 2005
Publisher: © American Institute of Physics
Citation: ARCHER, A.J. ... et al, 2005. Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft-core fluid. Journal of Chemical Physics, 122 (8), 084513.
Abstract: Using density functional theory we calculate the density profiles of a binary solvent adsorbed around a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase separation, and for thermodynamic states near to coexistence the big particles can be surrounded by a thick adsorbed "wetting" film of the coexisting solvent phase. On reducing the separation between the two big particles we find there can be a "bridging" transition as the wetting films join to form a fluid bridge. The effective (solvent mediated) potential between the two big particles becomes long ranged and strongly attractive in the bridged configuration. Within our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a nonzero bridge function in the correlations between the solute particles when our model fluid is described within a full mixture theory based upon the Ornstein-Zernike equations.
Description: Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Chemical Physics, 2005, 122 (8), 084513 and may be found at: http://dx.doi.org/10.1063/1.1855878
Sponsor: A.J.A. is grateful for the support of EPSRC under Grant No. GR/S28631/01
Version: Published
DOI: 10.1063/1.1855878
URI: https://dspace.lboro.ac.uk/2134/16052
Publisher Link: http://dx.doi.org/10.1063/1.1855878
ISSN: 0021-9606
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
1.1855878.pdfPublished version431.84 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.