Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16071

Title: Oxaliplatin complexes with carnosine and its derivatives: in vitro cytotoxicity, mass spectrometric and computational studies with a focus on complex fragmentation
Authors: Moustafa, Eslam M.
Camp, Claire L.
Youssef, Ahmed S.
Amleh, Asma
Reid, Helen J.
Sharp, Barry L.
Shoeib, Tamer
Issue Date: 2013
Publisher: © Royal Society of Chemistry
Citation: MOUSTAFA, E.M. ... et al, 2013. Oxaliplatin complexes with carnosine and its derivatives: in vitro cytotoxicity, mass spectrometric and computational studies with a focus on complex fragmentation. Metallomics, 5 (11), pp.1537-1546.
Abstract: The complexation of the Pt-based anti-cancer drug oxaliplatin (OxPt) with biological ligands other than DNA is believed to be a major cellular sink for the drug reducing its therapeutic potential and acting as a potential cause of toxicity. In this paper, an in vitro study on hepatocellular carcinoma HepG2 cells suggests that the naturally abundant cytoplasmic dipeptide ligand β-alanyl-L-histidine dipeptide (carnosine) may inhibit the cytotoxic action of OxPt most likely through the formation of complexes that are less cytotoxic than OxPt alone. Evidence is provided to suggest that pre-exposure of HepG2 cells to elevated levels of carnosine appears to have a lasting effect on reducing the cytotoxicity of OxPt even after the removal of the carnosine. This effect, however, is shown to be under kinetic control as its magnitude was shown not to vary significantly with the level of carnosine exposure within the concentration range used in this study. Various mass spectrometry techniques employing electrospray ionization and chip nanospray were employed to study the interaction of oxaliplatin with carnosine as well as two of its derivatives being β-alanyl-N-methylhistidine (anserine) and N-Acetylcarnosine (NAC). Evidence of complexation between OxPt and each of the three ligands examined is presented. Most species observed were unambiguously assigned and compared to their theoretical isotopic patterns. Common fragmentation products due to the collisionally-activated protonated complexes of each of the ligands examined with OxPt, [M + OxPt + H]+ where M= carnosine, anserine or NAC were reported. Density functional calculations at B3LYP/LANL2DZ were used to obtain structural information and relative free energies of different isomers of the observed precursor [Carnosine + OxPt + H]+ both in the gas phase and in solution as well as to probe its fragmentation, highlighting plausible fragmentation mechanisms that account for all the experimental results.Data are presented to show several binding modes between electron rich sites such as N and O centers of carnosine and the Pt metal of OxPt. Calculations were also employed to obtain proton affinities and free energies of key reactions. The proton affinities of carnosine, Anserine and NAC at 298 K were calculated to be 254.4, 255.9 and 250.2 kcal mol-1 respectively. To the best of our knowledge the proton affinities of anserine and N-acetyl-carnosine are the first reported values in the literature.
Description: The final published version of this paper is available at: http://dx.doi.org/10.1039/c3mt00180f
Version: Accepted for publication
DOI: 10.1039/c3mt00180f
URI: https://dspace.lboro.ac.uk/2134/16071
Publisher Link: http://dx.doi.org/10.1039/c3mt00180f
ISSN: 1756-5901
Appears in Collections:Published Articles (Chemistry)

Files associated with this item:

File Description SizeFormat
Carnosine OxPt Final Version.pdfAccepted version1.83 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.