Loughborough University
Browse
Sci Letters Fractal Metamaterial.pdf (993.77 kB)

Fractal metamaterials composed of electrically isolated pi-rings

Download (993.77 kB)
journal contribution
posted on 2014-11-14, 13:50 authored by Derek Michael Forrester, K.E. Kuerten, Feodor Kusmartsev
We develop the concept of fractal metamaterials which consist of arrays of nano and micron sized rings containing Josephson junctions which play the role of “atoms” in such artificial materials. We show that if some of the junctions have π-shifts in the Josephson phases that the “atoms” become magnetic and their arrays can have tuned positive or negative permeabilty. Each individual “π -ring” - the Josephson ring with one π-junction - can be in one of two energetically degenerate magnetic states in which the supercurrent flows in the clockwise or counter-clockwise direction. This results in magnetic moments that point downwards or upwards, respectively. The value of the total magnetization of such a metamaterial may display fractal features. We describe the magnetic properties of such superconducting metamaterials, including the magnetic field distribution in them (i.e. in the network that is made up of these rings). We also describe the way that the magnetic flux penetrates into the Josephson network and how it is strongly dependent on the geometry of the system.

Funding

This work has been supported by the European Science Foundation (ESF) in the framework of the network program “Arrays of Quantum Dots and Josephson Junctions” and the EPSRC KTA grant - “Developing prototypes and a commercial strategy for nanoblade technology”.

History

School

  • Science

Department

  • Physics

Volume

5

Issue

13

Pages

1 - 10 (10)

Citation

FORRESTER, M., KUERTEN, K.E. and KUSMARTSEV, F.V., 2015. Fractal metamaterials composed of electrically isolated pi-rings. ScienceJet, 4 (133), 10pp.

Publisher

Cognizure

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 Unported (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Publication date

2015

Notes

This is an Open Access Article. It is published by Cognizure under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

2278-3393

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC