Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16547

Title: Confinement effects of levitons in a graphene cosmology laboratory
Authors: Forrester, D. Michael
Keywords: Leviton
Magnetic fields
Lab on a chip
Issue Date: 2015
Publisher: © Royal Society of Chemistry
Citation: FORRESTER, D.M., 2015. Confinement effects of levitons in a graphene cosmology laboratory. RSC Advances, 5 (7), pp. 5442 - 5449.
Abstract: The leviton, a long-lifetime soliton that rides the Fermi sea, is described here for a graphene system with a potential barrier. A full description of the leviton into the barrier is given for different angles of incidence. This is achieved by analysing the probability density of the leviton quasiparticle as a function of time. The transmission of the wavepacket through the oblique barrier occurs with negative refraction for low ratios of leviton energy to gate potential. In moderately strong magnetic fields a levity vortex becomes localised in space outside the barrier forming interior vortex states as it circulates. Also, when the field is switched on with an anti-leviton already formed inside the barrier, the quasiparticle becomes trapped and flows along its channel. Thus, the graphene system with leviton/anti-leviton propagation into and inside a barrier is a metamaterial whereby the direction of the quasiparticle can be controlled at will through the angle of the barrier and timing of switching on and off the magnetic fields. We present this analysis of barrier penetration for the inception of leviton electronics in graphene. The results lead to the possibility to create the graphene systems with levitons to explore cosmological questions such as hidden or “dark” energy conditions and therewith may also give some clues for understanding the discrepancies occurring between observed energy levels in the Universe and that of prediction.
Description: This is an Open Access Article. It is published by The Royal Society of Chemistry under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
Sponsor: The author thanks the EPSRC for funding under KTA grant – “Developing prototypes and a commercial strategy for nanoblade technology”
Version: Published
DOI: 10.1039/C4RA11227J
URI: https://dspace.lboro.ac.uk/2134/16547
Publisher Link: http://dx.doi.org/10.1039/C4RA11227J
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
RSCAdv2015_5_5442_DMF.pdfPublished version2.18 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.