Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16686

Title: A study of matrix equations
Authors: McDonald, Eileen M.
Issue Date: 1987
Publisher: © E.M. McDonald
Abstract: Matrix equations have been studied by Mathematicians for many years. Interest in them has grown due to the fact that these equations arise in many different fields such as vibration analysis, optimal control, stability theory etc. This thesis is concerned with methods of solution of various matrix equations with particular emphasis on quadratic matrix equations. Large scale numerical techniques are not investigated but algebraic aspects of matrix equations are considered. Many established methods are described and the solution of a matrix equation by consideration of an equivalent system of multivariable polynomial equations is investigated. Matrix equations are also solved by a method which combines the given equation with the characteristic equation of the unknown matrix. Several iterative processes used for the solution of scalar equations are applied directly to the matrix equation. A new iterative process based on elimination methods is also described and examples given. The solutions of the equation x2 = P are obtained by a method which derives a set of polynomial equations connecting the characteristic coefficients of X and P. It is also shown that the equation X2 = P has an infinite number of solutions if P is a derogatory matrix. Acknowledgements
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/16686
Appears in Collections:PhD Theses (Maths)

Files associated with this item:

File Description SizeFormat
Thesis-1997-McDonald.pdf3.63 MBAdobe PDFView/Open
Form-1997-McDonald.pdf43.56 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.