Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16889

Title: Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling
Authors: Hughes, Adam P.
Thiele, Uwe
Archer, Andrew J.
Issue Date: 2015
Publisher: © AIP Publishing LLC
Citation: HUGHES, A.P., THIELE, U. and ARCHER, A.J., 2015. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. Journal of Chemical Physics, 142 (7), 074702.
Abstract: The contribution to the free energy for a film of liquid of thickness h on a solid surface due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h) and the associated wetting behaviour of the fluid.
Description: Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Chemical Physics, 142 (7), 074702 and may be found at: http://dx.doi.org/10.1063/1.4907732
Sponsor: A.P.H. acknowledges support through a Loughborough University Graduate School Studentship.
Version: Published
DOI: 10.1063/1.4907732
URI: https://dspace.lboro.ac.uk/2134/16889
Publisher Link: http://dx.doi.org/10.1063/1.4907732
ISSN: 0021-9606
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
Archer52.pdfPublished version1.74 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.