Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/16916

Title: The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, Microtus agrestis
Authors: Selman, Colin
Grune, Tilman
Stolzing, Alexandra
Jakstadt, Manuela
McLaren, Jane S.
Speakman, John R.
Keywords: Cold exposure
Free radicals
Protein oxidation
Resting metabolic rate
Issue Date: 2002
Publisher: © Elsevier Ltd.
Citation: SELMAN, C. ... et al, 2002. The consequences of acute cold exposure on protein oxidation and proteasome activity in short-tailed field voles, Microtus agrestis. Free Radical Biology and Medicine, 33 (2), pp. 259 - 265.
Abstract: During cold exposure, animals upregulate their metabolism and food intake, potentially exposing them to elevated reactive oxygen species (ROS) production and oxidative damage. We investigated whether acute cold (7 ± 3°C) exposure (1, 10, or 100 h duration) affected protein oxidation and proteasome activity, when compared to warm controls (22 ± 3°C), in a small mammal model, the short-tailed field vole Microtus agrestis. Protein carbonyls and the chymotrypsin-like proteasome activity were measured in plasma, heart, liver, kidney, small intestine (duodenum), skeletal muscle (gastrocnemius), and brown adipose tissue (BAT). Trypsin-like and peptidyl-glutamyl-like proteasome activities were determined in BAT, liver, and skeletal muscle. Resting metabolic rate increased significantly with duration of cold exposure. In skeletal muscle (SM) and liver, protein carbonyl levels also increased with duration of cold exposure, but this pattern was not repeated in BAT where protein carbonyls were not significantly elevated. Chymotrpsin-like proteasome activity did not differ significantly in any tissue. However, trypsin-like activity in SM and peptidyl-glutamyl-like activity in both skeletal muscle and liver, were reduced during the early phase of cold exposure (1-10 h), correlated with the increased carbonyl levels in these tissues. In contrast there was no reduction in proteasome activity in BAT during the early phase of cold exposure and peptidyl-glutamyl-like activity was significantly increased, correlated with the lack of accumulation of protein carbonyls in this tissue. The upregulation of proteasome activity in BAT may protect this tissue from accumulated oxidative damage to proteins. This protection may be a very important factor in sustaining uncoupled respiration, which underpins nonshivering thermogenesis at cold temperatures. © 2002 Elsevier Science Inc.
Description: This article is closed access.
Sponsor: This study was supported by a grant from the Biotechnology and Biological Sciences Research Council (SAGE-1 initiative) to J.R.S. and by the Deutsche Forschungsgemeinschaft and the Charite` Research Fonds to T.G.
Version: Published
DOI: 10.1016/S0891-5849(02)00874-2
URI: https://dspace.lboro.ac.uk/2134/16916
Publisher Link: http://dx.doi.org/10.1016/S0891-5849(02)00874-2
ISSN: 0891-5849
Appears in Collections:Closed Access (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Selman 2002.pdfPublished version74.04 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.