Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17283

Title: Designing magnetic superlattices that are composed of single domain nanomagnets
Authors: Forrester, Michael
Kusmartsev, F.V.
Kovacs, Endre
Keywords: Hysteresis
Magnetic phases
Issue Date: 2014
Publisher: Beilstein-Institut / © The Authors
Citation: FORRESTER, M., KUSMARTSEV, F.V. and KOVACS, E., 2014. Designing magnetic superlattices that are composed of single domain nanomagnets. Beilstein Journal of Nanotechnology, 5, pp. 956 - 963.
Abstract: Background: The complex nature of the magnetic interactions between any number of nanosized elements of a magnetic superlattice can be described by the generic behavior that is presented here. The hysteresis characteristics of interacting elliptical nanomagnets are described by a quasi-static method that identifies the critical boundaries between magnetic phases. A full dynamical analysis is conducted in complement to this and the deviations from the quasi-static analysis are highlighted. Each phase is defined by the configuration of the magnetic moments of the chain of single domain nanomagnets and correspondingly the existence of parallel, anti-parallel and canting average magnetization states. Results: We give examples of the phase diagrams in terms of anisotropy and coupling strength for two, three and four magnetic layers. Each phase diagrams character is defined by the shape of the magnetic hysteresis profile for a system in an applied magnetic field. We present the analytical solutions that enable one to define the “phase” boundaries between the emergence of spin-flop, anti-parallel and parallel configurations. The shape of the hysteresis profile is a function of the coupling strength between the nanomagnets and examples are given of how it dictates a systems magnetic response. Many different paths between metastable states can exist and this can lead to instabilities and fluctuations in the magnetization. Conclusion: With these phase diagrams one can find the most stable magnetic configurations against perturbations so as to create magnetic devices. On the other hand, one may require a magnetic system that can easily be switched between phases, and so one can use the information herein to design superlattices of the required shape and character by choosing parameters close to the phase boundaries. This work will be useful when designing future spintronic devices, especially those manipulating the properties of CoFeB compounds.
Description: This article was published in the Beilstein Journal of Nanotechnology by the Beilstein-Institut. It is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Sponsor: DMF thanks the EPSRC for funding under KTA grant - “Developing prototypes and a commercial strategy for nanoblade technology”. EK thanks the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project in the framework of the New Hungarian Development Plan.
Version: Published
DOI: 10.3762/bjnano.5.109
URI: https://dspace.lboro.ac.uk/2134/17283
Publisher Link: http://dx.doi.org/10.3762/bjnano.5.109
ISSN: 2190-4286
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
Designing magnetic superlattices that are composed of single domain nanomagnets.pdfPublished version520.12 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.