Loughborough University
Browse
Thesis-2015-Wang.pdf (622.04 kB)

Quasilinear PDEs and forward-backward stochastic differential equations

Download (622.04 kB)
thesis
posted on 2015-04-29, 10:19 authored by Xince Wang
In this thesis, first we study the unique classical solution of quasi-linear second order parabolic partial differential equations (PDEs). For this, we study the existence and uniqueness of the $L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{d}) \otimes L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{k})\otimes L^2_{\rho}( \mathbb{R}^{d}; \mathbb{R}^{k\times d})$ valued solution of forward backward stochastic differential equations (FBSDEs) with finite horizon, the regularity property of the solution of FBSDEs and the connection between the solution of FBSDEs and the solution of quasi-linear parabolic PDEs. Then we establish their connection in the Sobolev weak sense, in order to give the weak solution of the quasi-linear parabolic PDEs. Finally, we study the unique weak solution of quasi-linear second order elliptic PDEs through the stationary solution of the FBSDEs with infinite horizon.

Funding

none

History

School

  • Science

Department

  • Mathematical Sciences

Publisher

© Xince Wang

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en