Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17456

Title: Operational performance assessment of decentralised energy and district heating systems
Authors: Martin-Du Pan, Oliver
Keywords: District heating
Decentralised energy
Combined heat and power
Heat pump
Biomass
Issue Date: 2015
Publisher: © Oliver Martin-Du Pan
Abstract: District heating systems can contribute to reducing the UK’s CO2 emissions. This thesis investigates the operational performance of current district heating (DH) systems with the existing and a possible future energy sector. The main contributions to knowledge are:  Operational, financial and exergy performance assessments of three functioning DH systems and one decentralised energy (DE) technology  A methodology to optimise a DH system in a resource efficient and cost effective way The aims of DH systems are to provide heat, reduce CO2 emissions, ensure energy security by operating in a resource efficient way and to tackle fuel poverty. However, the case studies in this project confirm that DH systems operate poorly in the UK. This is largely because of the heat losses from the DH network to the soil being high and the plant operation being suboptimal. Four case studies were analysed. The 785 room Strand Palace hotel has two 250 kWe combined heat and power (CHP) engines set to modulate following the hotel’s electricity consumption and providing approximately 90% of this annual demand. It was found that the CHP engines never operate at full load throughout a full day, firstly because the plant cannot export electricity to the grid and secondly the system is not fitted with a thermal store. Financial analysis revealed that the hotel does not reduce its heating cost by operating the CHP engines, but that the energy service company (ESCo) makes £77,000 net operating income per year. Elmswell in Suffolk (UK) is a low heat density DH system that generates heat with a 2008 biomass boiler and pumps it to 26 terraced and semi-detached dwellings. It was found that 39% of its heat is lost to the soil and that the natural gas boiler generates 45% of the heating load and operates with a seasonal efficiency of 65%. The heat losses to the soil for this system were compared to a DH system of higher heat density, Loughborough University, with a lower heat loss of 22% to the soil. In August 2011, Loughborough University installed a 1.6 MWe CHP engine to operate with four 3 MWth natural gas boilers to supply heat to its DH network. A study undertaken demonstrated that by adding a 2 MWe CHP engine with a thermal storage instead of a 1.6 MWe CHP engine on its own could further increase the CO2 emissions savings from 8% to 12.4%. The energy centre at Pimlico District Heating Undertaking (PDHU) includes a gas fired cogeneration plant that supplies heat to 3 schools, 3,256 dwellings and 55 commercial units. It also benefits from a 2,500 m3 thermal store. Every component of PDHU was investigated in detail and its current operation was optimised and compared to a selection of new operating scenarios. It was found that: i) The thermal store operated with 93% thermal efficiency and was not used to reduce the energy consumption or to enable more cogeneration, ii) The CHP engines were undersized and generated only 18% of the required heat in 2012, iii) The boilers modulate and £ 70,000 could be saved per year by setting them to operate at full load by making use of the thermal store, iv) By installing an open-loop heat pump using the river Thames, PDHU could then guarantee to comply with current and likely future policies impacts by setting the energy plant to operate in CHP mode or as an electricity consumer at defined times to benefit from low energy utility costs and to minimise CO2 emissions. A comparison of selected performance metrics was then undertaken and it was found that none of the three DH systems operate in a resource efficient way and that the heating cost could be reduced further by optimising the operation of the systems. To do this, a new optimisation methodology is proposed by maximising their exergy efficiency in addition to maximising their overall energy efficiency and CO2 emissions reduction.
Description: A dissertation thesis submitted in partial fulfilment of the requirements for the award of the Engineering Doctorate (EngD) degree at Loughborough University.
Sponsor: EPSRC
URI: https://dspace.lboro.ac.uk/2134/17456
Appears in Collections:Published Theses (CICE)

Files associated with this item:

File Description SizeFormat
Thesis-2015-MartinDuPan.pdf8.11 MBAdobe PDFView/Open
Form-2015-MartinDuPan.pdf978.69 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.