Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17515

Title: Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness
Authors: Filingeri, Davide
Fournet, Damien
Hodder, S.G.
Havenith, George
Keywords: Skin
Tactile
Wetness
Sweating
Mechanoreceptors
Issue Date: 2015
Publisher: © American Physiological Society
Citation: FILINGERI, D. et al., 2015. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness. Journal of Neurophysiology (Article In Press)
Abstract: Humans sense the wetness of a wet surface though the somatosensory integration of thermal and tactile inputs generated by the interaction between skin and moisture. However, little is known on how wetness is sensed when moisture is produced via sweating. We tested the hypothesis that, in the absence of skin cooling, intermittent tactile cues, as coded by low-threshold skin mechanoreceptors, modulate the perception of sweat-induced skin wetness, independently of the level of physical wetness. Ten males (22 yr) performed an incremental exercise protocol during 2 trials designed to induce the same physical skin wetness but to induce lower (TIGHT-FIT) and higher (LOOSE-FIT) wetness perception. In the TIGHT-FIT, a tight fitting clothing ensemble limited intermittent skin-sweat-clothing tactile interactions. In the LOOSE-FIT, a loose fitting ensemble allowed free skin-sweat-clothing interactions. Heart rate, core and skin temperature, skin conductance (GSC), physical (wbody) and perceived skin wetness were recorded. Exercise-induced sweat production and physical wetness increased significantly (GSC: 3.1 µS, SD 0.3 to 18.8 µS, SD 1.3, p<0.01; wbody: 0.26 nd, SD 0.02, to 0.92 nd, SD 0.01, p<0.01) with no differences between TIGHT-FIT and LOOSE-FIT (p>0.05). However, the limited intermittent tactile inputs generated by the TIGHT-FIT ensemble reduced significantly whole-body and regional wetness perception (p<0.01). This reduction was more pronounced when between 40 and 80% of the body was covered in sweat. We conclude that the central integration of intermittent mechanical interactions between skin-sweat-clothing, as coded by low-threshold skin mechanoreceptors, significantly contributes to the ability to sense sweat-induced skin wetness.
Description: This article is closed access
Sponsor: Endevour Research Fellowship from the Australian Government, Department of Education; Loughborough University and Oxylane Research
Version: Accepted for publication
DOI: 10.1152/jn.00141.2015
URI: https://dspace.lboro.ac.uk/2134/17515
Publisher Link: http://dx.doi.org/10.1152/jn.00141.2015
ISSN: 0022-3077
Appears in Collections:Closed Access (Design School)

Files associated with this item:

File Description SizeFormat
Filingeri et al 2015.pdfAccepted version645.95 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.