Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Exergy efficiency graphs for thermal power plants

journal contribution
posted on 2015-06-02, 10:48 authored by J. Taillon, Richard BlanchardRichard Blanchard
Despite the strong support for exergy in thermodynamics, the industry still relies on energy based power plant efficiencies. The paper exposes errors with energy based efficiencies and improves the graphical representation of plants efficiencies. Among others, energy efficiencies cannot recognised that Combined Heat and Power (CHP) plant may be less efficient than condensing plants or that fossil fuel based plants should always be more efficient than any biomass plants because irreversibilities from biomass spontaneous thermo-chemical reactions are much higher than with coal or natural gas. Profitability equations fail to distinguish the true technical efficiency so exergy must be used, if only to enhance power plants understanding. Two novel graphs are introduced. Graph #1 combines all in a single graph; total, electrical and thermal exergy efficiencies. Graph #2 splits thermal exergy efficiency into two components related to; plant thermal losses and useful heat output quality. Data from 24 existing and design plants is used to support the graphs. Graph #1 shows different rankings of efficiencies than what is typically understood by the industry. Graph #2 shows that achieving further higher thermal energy efficiency barely increases the total exergy efficiency. If possible, it is better to increase the useful heat output quality.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Energy

Citation

TAILLON, J. and BLANCHARD, R.E., 2015. Exergy efficiency graphs for thermal power plants. Energy, DOI: 10.1016/j.energy.2015.03.055

Publisher

© Elsevier Ltd

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This paper is closed access.

ISSN

0360-5442

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC