Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17778

Title: Following Darwin's footsteps using 'the most wonderful plants in the world': the ecophysiological responses of the carnivorous plant Drosera rotundifolia to nitrogen availability.
Authors: Cook, Joni L.
Keywords: Carnivorous plants
N deposition
Prey capture
Plant-insect interactions
Stable isotope analysis
Linear mixing model
Drosera rotundifolia
Issue Date: 2015
Publisher: © Joni Linda Cook
Abstract: Nitrogen (N) is an essential element to plants for growth, maintenance and reproduction, however most N does not exist in a form that is biologically available to plants. In order to maximise the acquisition and retention of N, plants have evolved a variety of morphological and physiological adaptations and life history strategies, as well as the ability to respond plastically to changes in resource availability in ecological time. Determining the ecophysiological responses of plants to changes in root N availability is crucial to further understanding of the mechanisms underlying competitive interactions between plants, and between plants and other organisms, that ultimately contribute to community structure and ecosystem functioning. Carnivorous plants are ideal systems for investigating ecophysiological responses to N availability as:- (i) they share a unique adaptation for obtaining supplemental N from captured prey, therefore ecological stoichiometry and energetic cost/benefit models may be explored; (ii) the trait of botanical carnivory is widely considered to have independently co-evolved as a response to N-deficient, sunny and wet environments, therefore resource allocation trade-offs between plant investment in N and carbon (C) acquisition may be observed, and (iii) they are extremely sensitive to changes in root N availability in ecological time. In this research, the carnivorous plant Drosera rotundifolia (round-leaved sundew) was used to address several unanswered ecophysiological and evolutionary questions relating to patterns and processes of prey capture and the N nutrition of carnivorous plants. Furthermore, the potential for reducing uncertainty in the calculation of plant reliance on carnivory using a δ15N natural abundance multi-level linear mixing model was explored. A combined approach of in-situ and ex-situ studies was employed, using co-occurring non-carnivorous plants or carnivorous plant species with differing evolutionary lineages or prey capture mechanisms respectively to provide context. Results show that the adaptations of carnivory, high reproductive investment and a relatively short life span enable Drosera rotundifolia to survive and thrive in an extreme, N deficient environment. Phenotypically plastic responses by the plant to light and root N availability provide evidence of resource allocation trade-offs between investment in carnivory for N acquisition and in photosynthesis for C acquisition. Plants invested less heavily in prey capture (measured as the stickiness of leaf mucilage) as N availability increased or light availability decreased. These results show that the energetic costs associated with carnivory are avoided by the plant when less costly sources of N are available for uptake and that the production of carbon-rich mucilage is only made under nutrient-limited and well-lit conditions. Results obtained from the comparison of captured insect prey with background invertebrates of potential prey indicate that Drosera rotundifolia is a dietary generalist, where the quantity of prey captured per plant is positively correlated with leaf stickiness and total leaf area. Plant reliance on prey-derived N decreased with increasing root N availability, providing evidence that carnivory is only of net benefit to the plant in N-deficient and well-lit environments, as the photosynthetic costs of investment in the trait are not exceeded by the energetic gain from prey N uptake in shady or dry habitats. A more accurate and precise method for calculating plant reliance on botanical carnivory is presented which incorporates the insect diet of the plant. This method has wider significance for reducing uncertainty in the calculation of relative source contributions to a mixture for most natura