Loughborough University
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Optically controlled liquid flow in initially prohibited elastomeric nanocomposite micro-paths

journal contribution
posted on 2015-06-11, 13:27 authored by Francesca Villafiorita-Monteleone, Elisa MeleElisa Mele, Gianvito Caputo, Fabrizio Spano, Salvatore Girardo, P. Davide Cozzoli, Dario Pisignano, Roberto Cingolani, Despina Fragouli, Athanassia Athanassiou
The significant increment of TiO2 surface wettability upon UV irradiation makes it a promising component of materials or systems with tunable surface wetting characteristics. This remarkable property of TiO2 is retained in the nanocomposite materials developed for this work, which consist of the elastomer PDMS enriched with organic-capped nanorods of TiO2. In particular, the nanocomposites demonstrate a surface transition from a hydrophobic state to a hydrophilic one under selective pulsed UV laser irradiation. This wettability change is reversible, with the hydrophobic character of the nanocomposites being fully recovered after a couple of days of samples storage in moderate vacuum. The hydrophobic-to-hydrophilic transition and recovery can be repeated tens of times on the same sample without any apparent fatigue. As verified by XPS and AFM analysis, the wettability enhancement is exclusively attributed to the TiO2 nanorods exposed on the nanocomposite surface. The tuning of the surface wettability properties of the PDMS/TiO2 materials, together with the easy processability of this elastomer, opens the way to the realization of microfluidic devices with controlled liquid flow. We demonstrate the potentiality of such systems by fabricating microfluidic channels with walls of PDMS and PDMS/TiO2 nanorods composite materials. The combination of the used geometry with the hydrophobic character of both the pure and nanocomposite PDMS prohibits the penetration of water in their developed microchannels. After UV irradiation, water penetration is allowed inside the irradiated nanocomposite microfluidic channels, whereas it is still forbidden after the irradiation of the bare PDMS microchannels, revealing the essential role of the TiO2 nanofillers.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Materials

Published in

RSC ADVANCES

Volume

2

Issue

25

Pages

9543 - 9550 (8)

Citation

VILLAFIORITA-MONTELEONE, F. ... et al, 2012. Optically controlled liquid flow in initially prohibited elastomeric nanocomposite micro-paths. RSC Advances, 2 (25), pp. 9543 - 9550.

Publisher

© Royal Society of Chemistry

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2012

Notes

This paper is closed access.

ISSN

2046-2069

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC